225 research outputs found
Precision mass measurements of radioactive nuclei at JYFLTRAP
The Penning trap mass spectrometer JYFLTRAP was used to measure the atomic
masses of radioactive nuclei with an uncertainty better than 10 keV. The atomic
masses of the neutron-deficient nuclei around the N = Z line were measured to
improve the understanding of the rp-process path and the SbSnTe cycle.
Furthermore, the masses of the neutron-rich gallium (Z = 31) to palladium (Z =
46) nuclei have been measured. The physics impacts on the nuclear structure and
the r-process paths are reviewed. A better understanding of the nuclear
deformation is presented by studying the pairing energy around A = 100.Comment: 4 pages and 4 figures, RNB7 conf. pro
Mass measurements in the vicinity of the doubly-magic waiting point 56Ni
Masses of 56,57Fe, 53Co^m, 53,56Co, 55,56,57Ni, 57,58Cu, and 59,60Zn have
been determined with the JYFLTRAP Penning trap mass spectrometer at IGISOL with
a precision of dm/m \le 3 x 10^{-8}. The QEC values for 53Co, 55Ni, 56Ni, 57Cu,
58Cu, and 59Zn have been measured directly with a typical precision of better
than 0.7 keV and Coulomb displacement energies have been determined. The Q
values for proton captures on 55Co, 56Ni, 58Cu, and 59Cu have been measured
directly. The precision of the proton-capture Q value for 56Ni(p,gamma)57Cu,
Q(p,gamma) = 689.69(51) keV, crucial for astrophysical rp-process calculations,
has been improved by a factor of 37. The excitation energy of the proton
emitting spin-gap isomer 53Co^m has been measured precisely, Ex = 3174.3(10)
keV, and a Coulomb energy difference of 133.9(10) keV for the 19/2- state has
been obtained. Except for 53Co, the mass values have been adjusted within a
network of 17 frequency ratio measurements between 13 nuclides which allowed
also a determination of the reference masses 55Co, 58Ni, and 59Cu.Comment: 14 pages, 13 figures, submitted to Phys. Rev.
Electron-capture branch of 100Tc and tests of nuclear wave functions for double-beta decays
We present a measurement of the electron-capture branch of Tc. Our
value, , implies that the
Mo neutrino absorption cross section to the ground state of Tc
is roughly one third larger than previously thought. Compared to previous
measurements, our value of prevents a smaller disagreement with
QRPA calculations relevant to double- decay matrix elements
Beta-decay branching ratios of 62Ga
Beta-decay branching ratios of 62Ga have been measured at the IGISOL facility
of the Accelerator Laboratory of the University of Jyvaskyla. 62Ga is one of
the heavier Tz = 0, 0+ -> 0+ beta-emitting nuclides used to determine the
vector coupling constant of the weak interaction and the Vud quark-mixing
matrix element. For part of the experimental studies presented here, the
JYFLTRAP facility has been employed to prepare isotopically pure beams of 62Ga.
The branching ratio obtained, BR= 99.893(24)%, for the super-allowed branch is
in agreement with previous measurements and allows to determine the ft value
and the universal Ft value for the super-allowed beta decay of 62Ga
Q-values of the Superallowed beta-Emitters 26m-Al, 42-Sc and 46-V and their impact on V_ud and the Unitarity of the CKM Matrix
The beta-decay Q_EC-values of the superallowed beta emitters 26m-Al, 42-Sc
and 46-V have been measured with a Penning trap to a relative precision of
better than 8x10^-9. Our result for 46-V, 7052.72(31) keV, confirms a recent
measurement that differed significantly from the previously accepted
reaction-based Q_EC-value. However, our results for 26m-Al and 42-Sc,
4232.83(13) keV and 6426.13(21) keV, are consistent with previous
reaction-based values. By eliminating the possibility of a systematic
difference between the two techniques, this result demonstrates that no
significant shift in the deduced value of V_ud should be anticipated.Comment: 4 pages, 2 figures, 1 table. Submitted to Phys. Rev. Let
Precise atomic masses of neutron-rich Br and Rb nuclei close to the r-process path
The Penning trap mass spectrometer JYFLTRAP, coupled to the Ion-Guide Isotope Separator On-Line (IGISOL) facility at Jyvaskyla, was employed to measure the atomic masses of neutron rich 85 to 92Br and 94 to 97Rb isotopes with a typical accuracy less than 10 keV. Discrepancies with the older data are discussed. Comparison to different mass models is presented. Details of nuclear structure, shell and subshell closures are investigated by studying the two-neutron separation energy and the shell gap energy
Evolution of the N=50 shell gap energy towards Ni
Atomic masses of the neutron-rich isotopes Zn, Ga,
^{81-87}^{84-89}^{82,83}^{83-85}^{84-87}^{89}$Se
were measured for the first time. These new data represent a major improvement
in the knowledge of the masses in this neutron-rich region. Two-neutron
separation energies provide evidence for the reduction of the N=50 shell gap
energy towards germanium Z=32 and a subsequent increase at gallium (Z=31). The
data are compared with a number of theoretical models. An indication of the
persistent rigidity of the shell gap towards nickel (Z=28) is obtained.Comment: 4 pages, 4 figures. To be published in Physical Review Letter
A novel desmoplakin mutation causes dilated cardiomyopathy with palmoplantar keratoderma as an early clinical sign
Background PPKs represent a heterogeneous group of disorders with hyperkeratosis of palmar and/or plantar skin. PPK, hair shaft abnormalities, cardiomyopathy and arrhythmias can be caused by mutations in desmosomal genes, e.g. desmoplakin (DSP). PPK should trigger genetic testing to reveal mutations with possible related cardiac disease. Objectives To report a large multigenerational family with a novel DSP mutation associated with early-onset PPK and adult-onset cardiomyopathy and arrhythmias. Methods A custom-designed in-house panel of 35 PPK related genes was used to screen mutations in the index patient with focal PPK. The identified DSP mutation was verified by Sanger sequencing. DNA samples from 20 members of the large multigenerational family were sequenced for the DSP mutation. Medical records were reviewed. Clinical dermatological evaluation was performed, including light microscopy of hair samples. Cardiac evaluation included clinical examination, echocardiography, cardiac magnetic resonance imaging (CMR), electrocardiogram (ECG), Holter monitoring and laboratory tests. Results We identified a novel autosomal dominant truncating DSP c.2493delA p.(Glu831Aspfs*33) mutation associated with dilated cardiomyopathy (DCM) with arrhythmia susceptibility and focal PPK as an early cutaneous sign. The mutation was found in nine affected family members, but not in any unaffected members. Onset of dermatological findings preceded cardiac symptoms which were variable and occurred at adult age. Conclusions We report a novel truncating DSP mutation causing focal PPK with varying severity and left ventricular dilatation and ventricular extrasystoles. This finding emphasizes the importance of genetic diagnosis in patients with PPK for clinical counselling and management of cardiomyopathies and arrhythmias.Peer reviewe
- …