24 research outputs found

    Geochemical groundwater peculiarities of Paleogene sediments in S-E Western Siberia artesian basin

    Get PDF
    The geochemical peculiarities of groundwater in Paleogene deposits in southeastern part of Western Siberia artesian basin are considered in the paper. Landscape, climate, geostructural and hydrogeological conditions define the water composition and quality peculiarities in this region. It has been established that ion-saline composition, mineralization and water quality changes arre governed by the horizontal zonal distribution. Groundwater of taiga landscapes generally is in equilibrium with kaolinite and quartz, mainly involving Ca- and Mg-montmorillonite, illite, carbonate minerals, sometimes barite. Groundwater in woodland grass and grassland, together with previously mentioned minerals, is usually in equilibrium with barite, colestine, and particularly, fluorite and gypsum. As a result, all relevant elements are removed from the groundwater and their accumulation level is restricted

    Radiation-induced hydrogen transfer in metals

    Get PDF
    The paper presents processes of hydrogen (deuterium) diffusion and release from hydrogen-saturated condensed matters in atomic, molecular and ionized states under the influence of the electron beam and X-ray radiation in the pre-threshold region. The dependence is described between the hydrogen isotope release intensity and the current density and the electron beam energy affecting sample, hydrogen concentration in the material volume and time of radiation exposure to the sample. The energy distribution of the emitted positive ions of hydrogen isotopes is investigated herein. Mechanisms of radiation-induced hydrogen transfer in condensed matters are suggested

    Study of the Hydrogen-Metal Systems

    Get PDF
    Hydrogen accumulation in samples of a palladium and 12Kh18N10T steel at the hydrogen charging by the electrolytic method and hydrogen release from these samples at its electron and X-ray irradiation are studied. Palladium was used as a comparison material (as most efficiently solvent hydrogen known among the simple materials). It is established that a capture effectiveness of hydrogen from an electrolyte (1 M H 2 SO 4 at current density is 0.5 A cm −2 ) for palladium is 3-4 orders more than for steel. The hydrogen yield nonlinearly increases with growing of electron current density and electron energy is more than 40 keV under electron irradiation of saturated palladium and 12Kh18N10T steel samples. About 90% of the hydrogen had removed from hydrogen saturated palladium samples and only 60% from steel under electron beam with energy 40 keV and current density ≈ 20 µA cm −2 for 1 h of irradiation. It is necessary to increase the energy of electrons from 40 to 100 keV for the more effective removal of hydrogen

    Study of the Hydrogen-Metal Systems

    No full text
    Hydrogen accumulation in samples of a palladium and 12Kh18N10T steel at the hydrogen charging by the electrolytic method and hydrogen release from these samples at its electron and X-ray irradiation are studied. Palladium was used as a comparison material (as most efficiently solvent hydrogen known among the simple materials). It is established that a capture effectiveness of hydrogen from an electrolyte (1 M H2SO4H_2SO_4 at current density is 0.5 A cm2cm^{-2}) for palladium is 3-4 orders more than for steel. The hydrogen yield nonlinearly increases with growing of electron current density and electron energy is more than 40 keV under electron irradiation of saturated palladium and 12Kh18N10T steel samples. About 90% of the hydrogen had removed from hydrogen saturated palladium samples and only 60% from steel under electron beam with energy 40 keV and current density ≈ 20 μA cm2cm^{-2} for 1 h of irradiation. It is necessary to increase the energy of electrons from 40 to 100 keV for the more effective removal of hydrogen
    corecore