6,514 research outputs found
Vortex line representation for flows of ideal and viscous fluids
It is shown that the Euler hydrodynamics for vortical flows of an ideal fluid
coincides with the equations of motion of a charged {\it compressible} fluid
moving due to a self-consistent electromagnetic field. Transition to the
Lagrangian description in a new hydrodynamics is equivalent for the original
Euler equations to the mixed Lagrangian-Eulerian description - the vortex line
representation (VLR). Due to compressibility of a "new" fluid the collapse of
vortex lines can happen as the result of breaking (or overturning) of vortex
lines. It is found that the Navier-Stokes equation in the vortex line
representation can be reduced to the equation of the diffusive type for the
Cauchy invariant with the diffusion tensor given by the metric of the VLR
Interaction of a vortex ring with the free surface of ideal fluid
The interaction of a small vortex ring with the free surface of a perfect
fluid is considered. In the frame of the point ring approximation the
asymptotic expression for the Fourier-components of radiated surface waves is
obtained in the case when the vortex ring comes from infinity and has both
horizontal and vertical components of the velocity. The non-conservative
corrections to the equations of motion of the ring, due to Cherenkov radiation,
are derived.Comment: LaTeX, 15 pages, 1 eps figur
Suppression of transverse instabilities of dark solitons and their dispersive shock waves
We investigate the impact of nonlocality, owing to diffusive behavior, on
transverse instabilities of a dark stripe propagating in a defocusing cubic
medium. The nonlocal response turns out to have a strongly stabilizing effect
both in the case of a single soliton input and in the regime where dispersive
shock waves develop "multisoliton regime". Such conclusions are supported by
the linear stability analysis and numerical simulation of the propagation
- …