6,514 research outputs found

    Vortex line representation for flows of ideal and viscous fluids

    Get PDF
    It is shown that the Euler hydrodynamics for vortical flows of an ideal fluid coincides with the equations of motion of a charged {\it compressible} fluid moving due to a self-consistent electromagnetic field. Transition to the Lagrangian description in a new hydrodynamics is equivalent for the original Euler equations to the mixed Lagrangian-Eulerian description - the vortex line representation (VLR). Due to compressibility of a "new" fluid the collapse of vortex lines can happen as the result of breaking (or overturning) of vortex lines. It is found that the Navier-Stokes equation in the vortex line representation can be reduced to the equation of the diffusive type for the Cauchy invariant with the diffusion tensor given by the metric of the VLR

    Interaction of a vortex ring with the free surface of ideal fluid

    Get PDF
    The interaction of a small vortex ring with the free surface of a perfect fluid is considered. In the frame of the point ring approximation the asymptotic expression for the Fourier-components of radiated surface waves is obtained in the case when the vortex ring comes from infinity and has both horizontal and vertical components of the velocity. The non-conservative corrections to the equations of motion of the ring, due to Cherenkov radiation, are derived.Comment: LaTeX, 15 pages, 1 eps figur

    Suppression of transverse instabilities of dark solitons and their dispersive shock waves

    Full text link
    We investigate the impact of nonlocality, owing to diffusive behavior, on transverse instabilities of a dark stripe propagating in a defocusing cubic medium. The nonlocal response turns out to have a strongly stabilizing effect both in the case of a single soliton input and in the regime where dispersive shock waves develop "multisoliton regime". Such conclusions are supported by the linear stability analysis and numerical simulation of the propagation
    • …
    corecore