20 research outputs found

    Antarctic polar vortex dynamics in 2019 and 2020 under the influence of the subtropical stratosphere

    Get PDF
    The trend of strengthening of the Antarctic polar vortex in late spring and early summer (November–December) has been observed in recent decades. A good example of this trend is the dynamics of the Antarctic polar vortex in 2020 when it existed until the last week of December. In 2019, conversely, on the contrary, an unusually early breakup of the polar vortex occurred, a minor sudden stratospheric warming was recorded. Strengthening (or weakening) of the Antarctic polar vortex occurs as a result of an increase (or decrease) in the stratospheric meridional temperature gradient under conditions of growth (or decline) in the temperature of the lower subtropical stratosphere. We considered the temperature variations in the lower subtropical stratosphere in the spring of 2019 and 2020 and the corresponding response of the Antarctic polar vortex. The dynamics of the Antarctic polar vortex in September–October 2019 and November 2020 was largely synchronized with the temperature changes in the lower subtropical stratosphere relative to climatological means. Using correlation analysis, we show that the Antarctic polar vortex dynamics in December is largely due to the temperature changes in the lower subtropical stratosphere that occurred in the second half of November, which manifested itself in 2020.The trend of strengthening of the Antarctic polar vortex in late spring and early summer (November–December) has been observed in recent decades. A good example of this trend is the dynamics of the Antarctic polar vortex in 2020 when it existed until the last week of December. In 2019, conversely, on the contrary, an unusually early breakup of the polar vortex occurred, a minor sudden stratospheric warming was recorded. Strengthening (or weakening) of the Antarctic polar vortex occurs as a result of an increase (or decrease) in the stratospheric meridional temperature gradient under conditions of growth (or decline) in the temperature of the lower subtropical stratosphere. We considered the temperature variations in the lower subtropical stratosphere in the spring of 2019 and 2020 and the corresponding response of the Antarctic polar vortex. The dynamics of the Antarctic polar vortex in September–October 2019 and November 2020 was largely synchronized with the temperature changes in the lower subtropical stratosphere relative to climatological means. Using correlation analysis, we show that the Antarctic polar vortex dynamics in December is largely due to the temperature changes in the lower subtropical stratosphere that occurred in the second half of November, which manifested itself in 2020

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Behavior of a test body in a plane gravitational (gravity) wave

    No full text

    Motion of a test body in Taub space

    No full text
    corecore