68 research outputs found

    Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° лСкарств ΠΈ ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚Ρ‹ΠΉ доступ: ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ ΠΈ пСрспСктивы

    Get PDF
    The development of a new medicine is a process that requires enormous time and tremendous financing. It takes 10-15 years from the discovery of an active compound to the launch of its production and the start of drug marketing with the total costs of the project reaching 1.8 billion US dollars. These large time and financial costs stem from repeated testing and elimination of a large percentage of compounds over the course of screening at each stage of preclinical and clinical trials. Many investors have lost interest in financing new drug discovery projects (or pharmaceutical start-up companies) due to the high risk and extensive time required to produce a return on investments. Since all the research data are considered confidential by pharmaceutical companies and thus never shared with scientific community, different scientific groups waste significant resources repeating the same costly experiments in drug discovery. In this article, we discuss new approaches to drug discovery involving open access to the research data and alternative financing that could significantly streamline the search for new cures for human diseases.Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Π½ΠΎΠ²ΠΎΠ³ΠΎ лСкарства – процСсс, Ρ‚Ρ€Π΅Π±ΡƒΡŽΡ‰ΠΈΠΉ ΠΊΠΎΠ»ΠΎΡΡΠ°Π»ΡŒΠ½Ρ‹Ρ… Π·Π°Ρ‚Ρ€Π°Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈ финансовых срСдств. ΠžΡ‚ нахоТдСния Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… химичСских соСдинСний Π΄ΠΎ Π²Ρ‹Ρ…ΠΎΠ΄Π° ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° Π½Π° Ρ€Ρ‹Π½ΠΎΠΊ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ 10-15 Π»Π΅Ρ‚ ΠΈ расходуСтся порядка 1.8 ΠΌΠΈΠ»Π»ΠΈΠ°Ρ€Π΄Π° Π΄ΠΎΠ»Π»Π°Ρ€ΠΎΠ². Π’Π°ΠΊΠΈΠ΅ сроки ΠΈ суммы обусловлСны большим ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚ΠΎΠΌ отсСва химичСских соСдинСний Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΉ стадии доклиничСских ΠΈ клиничСских испытаний. МногиС инвСсторы потСряли интСрСс ΠΊ Ρ„ΠΈΠ½Π°Π½ΡΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ фармацСвтичСских стартапов ΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΎΠ² ΠΏΠΎ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ Π½ΠΎΠ²Ρ‹Ρ… ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² ΠΈΠ·-Π·Π° высокого риска ΠΈ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ³ΠΎ для получСния ΠΏΡ€ΠΈΠ±Ρ‹Π»ΠΈ ΠΎΡ‚ инвСстиций. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ всС Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдований ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚ фармацСвтичСским компаниям, ΡΡ‡ΠΈΡ‚Π°ΡŽΡ‚ΡΡ ΠΊΠΎΠ½Ρ„ΠΈΠ΄Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΈ поэтому нСдоступны для Π½Π°ΡƒΡ‡Π½ΠΎΠ³ΠΎ сообщСства, Π½Π°ΡƒΡ‡Π½Ρ‹Π΅ ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΈΠ²Ρ‹ тратят Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ рСсурсы, повторяя ΠΎΠ΄Π½ΠΈ ΠΈ Ρ‚Π΅ ΠΆΠ΅ дорогостоящиС экспСримСнты. Π’ этом ΠΎΠ±Π·ΠΎΡ€Π΅ ΠΌΡ‹ рассматриваСм соврСмСнныС ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡ‹ ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΠΏΠΎ созданию Π½ΠΎΠ²Ρ‹Ρ… лСкарств – ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚Ρ‹ΠΉ доступ ΠΊ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ исслСдований ΠΈ Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Π½ΠΎΠ΅ финансированиС. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ этих ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΡƒΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΈ ΡƒΠ΄Π΅ΡˆΠ΅Π²ΠΈΡ‚ΡŒ поиск Π½ΠΎΠ²Ρ‹Ρ… лСкарствСнных ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² для лСчСния людСй

    Novel Biodegradable Polymeric Microparticles Facilitate Scarless Wound Healing by Promoting Re-epithelialization and Inhibiting Fibrosis

    Get PDF
    Despite decades of research, the goal of achieving scarless wound healing remains elusive. One of the approaches, treatment with polymeric microcarriers, was shown to promote tissue regeneration in various in vitro models of wound healing. The in vivo effects of such an approach are attributed to transferred cells with polymeric microparticles functioning merely as inert scaffolds. We aimed to establish a bioactive biopolymer carrier that would promote would healing and inhibit scar formation in the murine model of deep skin wounds. Here we characterize two candidate types of microparticles based on fibroin/gelatin or spidroin and show that both types increase re-epithelialization rate and inhibit scar formation during skin wound healing. Interestingly, the effects of these microparticles on inflammatory gene expression and cytokine production by macrophages, fibroblasts, and keratinocytes are distinct. Both types of microparticles, as well as their soluble derivatives, fibroin and spidroin, significantly reduced the expression of profibrotic factors Fgf2 and Ctgf in mouse embryonic fibroblasts. However, only fibroin/gelatin microparticles induced transient inflammatory gene expression and cytokine production leading to an influx of inflammatory Ly6C+ myeloid cells to the injection site. The ability of microparticle carriers of equal proregenerative potential to induce inflammatory response may allow their subsequent adaptation to treatment of wounds with different bioburden and fibrotic content

    ΠŸΠ΅Ρ€ΡΠΏΠ΅ΠΊΡ‚ΠΈΠ²Π° примСнСния Π±ΠΈΠΎΠ³Π΅Π½Π½Ρ‹Ρ… ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ наночастиц ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄ΠΎΠ² сСрСбра, кадмия ΠΈ Ρ†ΠΈΠ½ΠΊΠ° для создания ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… Π±ΠΈΠΎΠ½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ²

    Get PDF
    The possibility of applying silver, cadmium and zinc sulfide nanoparticles (npAg2S, npCdS and npZnS) obtained using Shewanella oneidensis MR-1 and Bacillus subtilis 168 bacterial cultures for the creation of a new class of polymeric bionanocomposite materials was investigated. Biogenic nanoparticles obtained in aqueous solutions of the corresponding salts in the presence of various types of microorganisms are characterized by the presence of protein molecules on their surface. The molecules composition is determined by the bacterial culture. Proteins stabilize them and allow the nanoparticles to covalently join the active groups of polymeric carriers. Aminated chloromethylated polystyrene microspheres, as well as ion-exchange resins of various types, were used as polymeric matrices. Analysis of interaction with them can be used as a method for studying the properties of biogenic nanoparticles of metal sulfides for subsequent successful selection of a polymeric carrier. The immobilization of biogenic nanoparticles of metal sulfides onto the surface of aminated chloromethylated polystyrene microspheres was found to depend on the level of stability of aqueous nanoparticle suspensions and is determined by the negative charge of biogenic npAg2S, npCdS and npZnS, which suggests covalent binding and the electrostatic interaction of the components in the composition of the polymer bionanocomposite. A comparative analysis of the parameters of nanoparticles depending on the strain used in the biosynthesis was carried out. Analysis of the main physicochemical characteristics of npCdS and npZnS showed that the small size of nanoparticles (npCdS - 5 nm, npZnS - up to 2 nm) and the presence of luminescence peaks at wavelengths less than 400 nm classify them in the blue region of the fluorescence spectrum and identify them as quantum dots. Thus, the possibility of introducing fluorescent quantum dots of nanoparticles of metal sulfides of biogenic origin into various polymeric matrices has been demonstrated, which contributes to the expansion of the horizons for using a new class of nanoparticles to create polymeric bionanocomposites.ИсслСдована Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ примСнСния наночастиц ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄Π° сСрСбра, кадмия ΠΈ Ρ†ΠΈΠ½ΠΊΠ° (npAg2S, npCdS ΠΈ npZnS), ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… с использованиСм Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ Shewanella oneidensis MR-1 ΠΈ Bacillus subtilis 168, для создания Π½ΠΎΠ²ΠΎΠ³ΠΎ класса ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… Π±ΠΈΠΎΠ½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ². Π‘ΠΈΠΎΠ³Π΅Π½Π½Ρ‹Π΅ наночастицы, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π² Π²ΠΎΠ΄Π½Ρ‹Ρ… растворах ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… солСй Π² присутствии Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ‚ΠΈΠΏΠΎΠ² ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ², Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ΡΡ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ΠΌ Π½Π° ΠΈΡ… повСрхности Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Ρ… ΠΌΠΎΠ»Π΅ΠΊΡƒΠ», состав ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… опрСдСляСтся Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ΠΎΠΉ. Π‘Π΅Π»ΠΊΠΈ ΡΡ‚Π°Π±ΠΈΠ»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‚ наночастицы ΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΠΈΠΌ ΠΊΠΎΠ²Π°Π»Π΅Π½Ρ‚Π½ΠΎ ΠΏΡ€ΠΈΡΠΎΠ΅Π΄ΠΈΠ½ΡΡ‚ΡŒΡΡ ΠΊ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌ Π³Ρ€ΡƒΠΏΠΏΠ°ΠΌ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… носитСлСй. Π’ качСствС ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Ρ€ΠΈΡ† использовали Π°ΠΌΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Ρ…Π»ΠΎΡ€ΠΌ,Π΅Ρ‚ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½-Π½Ρ‹Π΅ ΠΏΠΎΠ»ΠΈΡΡ‚ΠΈΡ€ΠΎΠ»ΡŒΠ½Ρ‹Π΅ микросфСры, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΠΎΠ½ΠΎΠΎΠ±ΠΌΠ΅Π½Π½Ρ‹Π΅ смолы Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ‚ΠΈΠΏΠΎΠ². Анализ Π²Π·Π°ΠΈΠ»ΡŽΠ΄Π΅ΠΉΡΡ‚Π²ΠΈΡ с Π½ΠΈΠΌΠΈ Π»ΡŽΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ использован Π² качСствС Π»ΡŠΠ΅Ρ‚ΠΎΠ΄Π° изучСния свойств Π±ΠΈΠΎΠ³Π΅Π½Π½Ρ‹Ρ… наночастиц ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄ΠΎΠ² ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² для ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π³ΠΎ ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎΠ³ΠΎ Π²Ρ‹Π±ΠΎΡ€Π° ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ носитСля. УстановлСно, Ρ‡Ρ‚ΠΎ иммобилизация Π±ΠΈΠΎΠ³Π΅Π½Π½Ρ‹Ρ… наночастиц ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄ΠΎΠ² ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² Π½Π° повСрхности Π°ΠΌΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Ρ…Π»ΠΎΡ€ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΏΠΎΠ»ΠΈΡΡ‚ΠΈΡ€ΠΎΠ»ΡŒΠ½Ρ‹Ρ… микросфСр зависит ΠΎΡ‚ уровня ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π²ΠΎΠ΄Π½Ρ‹Ρ… суспСнзий наночастиц ΠΈ опрСдСляСтся ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ зарядом Π±ΠΈΠΎΠ³Π΅Π½Π½Ρ‹Ρ… npAg2S, npCdS ΠΈ npZnS, Ρ‡Ρ‚ΠΎ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚ ΠΊΠΎΠ²Π°Π»Π΅Π½Ρ‚Π½ΠΎΠ΅ связываниС ΠΈ элСктростатичСскоС взаимодСйствиС ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² Π² составС ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ Π±ΠΈΠΎΠ½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π°. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² наночастиц Π² зависимости ΠΎΡ‚ ΡˆΡ‚Π°ΠΌΠΌΠ°, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΠΎΠ³ΠΎ Π² биосинтСзС. Анализ основных Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСских характСристик npCdS ΠΈ npZnS ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ нСбольшиС Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹ наночастиц (npCdS - 5 Π½ΠΌ, npZnS - Π΄ΠΎ 2 Π½ΠΌ) ΠΈ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Π»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΏΠΈΠΊΠΎΠ² Π½Π° Π΄Π»ΠΈΠ½Π°Ρ… Π²ΠΎΠ»Π½ ΠΌΠ΅Π½Π΅Π΅ 400 Π½ΠΌ, Ρ‡Ρ‚ΠΎ относит ΠΈΡ… ΠΊ синСй области спСктра флуорСсцСнции, позволяСт ΠΊΠ»Π°ΡΡΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΡ… ΠΊΠ°ΠΊ ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π±Ρ‹Π»Π° продСмонстрирована Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ввСдСния флуорСсцСнтных ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ наночастиц ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄ΠΎΠ² ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² Π±ΠΈΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ происхоТдСния Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Π΅ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹, Ρ‡Ρ‚ΠΎ способствуСт Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΡŽ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚ΠΎΠ² использования Π½ΠΎΠ²ΠΎΠ³ΠΎ класса наночастиц для создания ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… Π±ΠΈΠΎΠ½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΎΠ²

    Synthesis of poly(L-arginine)

    No full text
    • …
    corecore