53 research outputs found

    A <i>Trypanosoma brucei</i> β3 glycosyltransferase superfamily gene encodes a β1-6 GlcNAc-transferase mediating N-glycan and GPI anchor modification

    Get PDF
    The parasite Trypanosoma brucei exists in both a bloodstream form (BSF) and a procyclic form (PCF), which exhibit large carbohydrate extensions on the N-linked glycans and glycosylphosphatidylinositol (GPI) anchors, respectively. The parasite's glycoconjugate repertoire suggests at least 38 glycosyltransferase (GT) activities, 16 of which are currently uncharacterized. Here, we probe the function(s) of the uncharacterized GT67 glycosyltransferase family and a β3 glycosyltransferase (β3GT) superfamily gene, TbGT10. A BSF-null mutant, created by applying the diCre/loxP method in T. brucei for the first time, showed a fitness cost but was viable in vitro and in vivo and could differentiate into the PCF, demonstrating nonessentiality of TbGT10. The absence of TbGT10 impaired the elaboration of N-glycans and GPI anchor side chains in BSF and PCF parasites, respectively. Glycosylation defects included reduced BSF glycoprotein binding to the lectin ricin and monoclonal antibodies mAb139 and mAbCB1. The latter bind a carbohydrate epitope present on lysosomal glycoprotein p67 that we show here consists of (-6Galβ1-4GlcNAcβ1-)≥4 poly-N-acetyllactosamine repeats. Methylation linkage analysis of Pronase-digested glycopeptides isolated from BSF wild-type and TbGT10 null parasites showed a reduction in 6-O-substituted- and 3,6-di-O-substituted-Gal residues. These data define TbGT10 as a UDP-GlcNAc:βGal β1-6 GlcNAc-transferase. The dual role of TbGT10 in BSF N-glycan and PCF GPI-glycan elaboration is notable, and the β1-6 specificity of a β3GT superfamily gene product is unprecedented. The similar activities of trypanosome TbGT10 and higher-eukaryote I-branching enzyme (EC 2.4.1.150), which belong to glycosyltransferase families GT67 and GT14, respectively, in elaborating N-linked glycans, are a novel example of convergent evolution

    The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock.

    Get PDF
    SummaryIn mammals, the master clock of the suprachiasmatic nuclei (SCN) and subordinate clocks found throughout the body coordinate circadian rhythms of behavior and physiology. We characterize the clock of the adrenal, an important endocrine gland that synchronizes physiological and metabolic rhythms. Clock gene expression was detected in the outer adrenal cortex prefiguring a role of the clock in regulating gluco- and mineral corticoid biogenesis. In Per2/Cry1 double mutant mice, which lack a circadian clock, hypothalamus/pituitary/adrenal axis regulation was defective. Organ culture and tissue transplantation suggest that the adrenal pacemaker gates glucocorticoid production in response to adrenocorticotropin (ACTH). In vivo the adrenal circadian clock can be entrained by light. Transcriptome profiling identified rhythmically expressed genes located at diverse nodes of steroid biogenesis that may mediate gating of the ACTH response by the adrenal clock

    A Trypanosoma brucei β3 glycosyltransferase superfamily gene encodes a β1-6 GlcNAc-transferase mediating N-glycan and GPI anchor modification

    Get PDF
    The parasite Trypanosoma brucei exists in both a bloodstream form (BSF) and a procyclic form (PCF), which exhibit large carbohydrate extensions on the N-linked glycans and glycosylphosphatidylinositol (GPI) anchors, respectively. The parasite's glycoconjugate repertoire suggests at least 38 glycosyltransferase (GT) activities, 16 of which are currently uncharacterized. Here, we probe the function(s) of the uncharacterized GT67 glycosyltransferase family and a β3 glycosyltransferase (β3GT) superfamily gene, TbGT10. A BSF-null mutant, created by applying the diCre/loxP method in T. brucei for the first time, showed a fitness cost but was viable in vitro and in vivo and could differentiate into the PCF, demonstrating nonessentiality of TbGT10. The absence of TbGT10 impaired the elaboration of N-glycans and GPI anchor side chains in BSF and PCF parasites, respectively. Glycosylation defects included reduced BSF glycoprotein binding to the lectin ricin and monoclonal antibodies mAb139 and mAbCB1. The latter bind a carbohydrate epitope present on lysosomal glycoprotein p67 that we show here consists of (-6Galβ1-4GlcNAcβ1-)≥4 poly-N-acetyllactosamine repeats. Methylation linkage analysis of Pronase-digested glycopeptides isolated from BSF wild-type and TbGT10 null parasites showed a reduction in 6-O-substituted- and 3,6-di-O-substituted-Gal residues. These data define TbGT10 as a UDP-GlcNAc:βGal β1-6 GlcNAc-transferase. The dual role of TbGT10 in BSF N-glycan and PCF GPI-glycan elaboration is notable, and the β1-6 specificity of a β3GT superfamily gene product is unprecedented. The similar activities of trypanosome TbGT10 and higher-eukaryote I-branching enzyme (EC 2.4.1.150), which belong to glycosyltransferase families GT67 and GT14, respectively, in elaborating N-linked glycans, are a novel example of convergent evolution

    Constructing Delaunay triangulations along space-filling curves

    Get PDF
    Incremental construction con BRIO using a space-filling curve order for insertion is a popular algorithm for constructing Delaunay triangulations. So far, it has only been analyzed for the case that a worst-case optimal point location data structure is used which is often avoided in implementations. In this paper, we analyze its running time for the more typical case that points are located by walking. We show that in the worst-case the algorithm needs quadratic time, but that this can only happen in degenerate cases. We show that the algorithm runs in O(n logn) time under realistic assumptions. Furthermore, we show that it runs in expected linear time for many random point distributions. This research was supported by the Deutsche Forschungsgemeinschaft within the European graduate program ’Combinatorics, Geometry, and Computation’ (No. GRK 588/2) and by the Netherlands’ Organisation for Scientific Research (NWO) under BRICKS/FOCUS grant number 642.065.503 and project no. 639.022.707

    Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy

    Get PDF
    Sustained glucose and glutamine transport are essential for activated T lymphocytes to support ATP and macromolecule biosynthesis. We now show that glutamine and glucose also fuel an indispensible dynamic regulation of intracellular protein O-GlcNAcylation at key stages of T cell development, transformation and differentiation. Glucose and glutamine are precursors of UDP-GlcNAc, a substrate for cellular glycosyltransferases. Immune activated T cells contained higher concentrations of UDP-GlcNAc and increased intracellular protein O-GlcNAcylation controlled by the enzyme O-GlcNAc glycosyltransferase as compared to naïve cells. We identified Notch, the T cell antigen receptor and c-Myc as key controllers of T cell protein O-GlcNAcylation, via regulation of glucose and glutamine transport. Loss of O-GlcNAc transferase blocked T cell progenitor renewal, malignant transformation, and peripheral T cell clonal expansion. Nutrient-dependent signaling pathways regulated by O-GlcNAc glycosyltransferase are thus fundamental for T cell biology

    A reporting format for leaf-level gas exchange data and metadata

    Get PDF
    Leaf-level gas exchange data support the mechanistic understanding of plant fluxes of carbon and water. These fluxes inform our understanding of ecosystem function, are an important constraint on parameterization of terrestrial biosphere models, are necessary to understand the response of plants to global environmental change, and are integral to efforts to improve crop production. Collection of these data using gas analyzers can be both technically challenging and time consuming, and individual studies generally focus on a small range of species, restricted time periods, or limited geographic regions. The high value of these data is exemplified by the many publications that reuse and synthesize gas exchange data, however the lack of metadata and data reporting conventions make full and efficient use of these data difficult. Here we propose a reporting format for leaf-level gas exchange data and metadata to provide guidance to data contributors on how to store data in repositories to maximize their discoverability, facilitate their efficient reuse, and add value to individual datasets. For data users, the reporting format will better allow data repositories to optimize data search and extraction, and more readily integrate similar data into harmonized synthesis products. The reporting format specifies data table variable naming and unit conventions, as well as metadata characterizing experimental conditions and protocols. For common data types that were the focus of this initial version of the reporting format, i.e., survey measurements, dark respiration, carbon dioxide and light response curves, and parameters derived from those measurements, we took a further step of defining required additional data and metadata that would maximize the potential reuse of those data types. To aid data contributors and the development of data ingest tools by data repositories we provided a translation table comparing the outputs of common gas exchange instruments. Extensive consultation with data collectors, data users, instrument manufacturers, and data scientists was undertaken in order to ensure that the reporting format met community needs. The reporting format presented here is intended to form a foundation for future development that will incorporate additional data types and variables as gas exchange systems and measurement approaches advance in the future. The reporting format is published in the U.S. Department of Energy's ESS-DIVE data repository, with documentation and future development efforts being maintained in a version control system

    Lysyl-tRNA synthetase as a drug target in malaria and cryptosporidiosis

    Get PDF
    Malaria and cryptosporidiosis, caused by apicomplexan parasites, remain major drivers of global child mortality. New drugs for the treatment of malaria and cryptosporidiosis, in particular, are of high priority; however, there are few chemically validated targets. The natural product cladosporin is active against blood- and liver-stage; Plasmodium falciparum; and; Cryptosporidium parvum; in cell-culture studies. Target deconvolution in; P. falciparum; has shown that cladosporin inhibits lysyl-tRNA synthetase (; Pf; KRS1). Here, we report the identification of a series of selective inhibitors of apicomplexan KRSs. Following a biochemical screen, a small-molecule hit was identified and then optimized by using a structure-based approach, supported by structures of both; Pf; KRS1 and; C. parvum; KRS (; Cp; KRS). In vivo proof of concept was established in an SCID mouse model of malaria, after oral administration (ED; 90; = 1.5 mg/kg, once a day for 4 d). Furthermore, we successfully identified an opportunity for pathogen hopping based on the structural homology between; Pf; KRS1 and; Cp; KRS. This series of compounds inhibit; Cp; KRS and; C. parvum; and; Cryptosporidium hominis; in culture, and our lead compound shows oral efficacy in two cryptosporidiosis mouse models. X-ray crystallography and molecular dynamics simulations have provided a model to rationalize the selectivity of our compounds for; Pf; KRS1 and; Cp; KRS vs. (human); Hs; KRS. Our work validates apicomplexan KRSs as promising targets for the development of drugs for malaria and cryptosporidiosis

    Anti-trypanosomatid drug discovery:an ongoing challenge and a continuing need

    Get PDF

    On the most likely Voronoi diagram and nearest neighbor searching

    Get PDF
    We consider the problem of nearest-neighbor searching among a set of stochastic sites, where a stochastic site is a tuple (si,pi) consisting of a point si in a d-dimensional space and a probability pi determining its existence. The problem is interesting and non-trivial even in 1-dimension, where the Most Likely Voronoi Diagram (LVD) is shown to have worst-case complexity O(n2). We then show that under more natural and less adversarial conditions, the size of the 1-dimensional LVD is significantly smaller: (1) T(kn) if the input has only k distinct probability values, (2) O(nlogn) on average, and (3) O(nnv) under smoothed analysis. We also present an alternative approach to the most likely nearest neighbor (LNN) search using Pareto sets, which gives a linear-space data structure and sub-linear query time in 1D for average and smoothed analysis models, as well as worst-case with a bounded number of distinct probabilities. Using the Pareto-set approach, we can also reduce the multi-dimensional LNN search to a sequence of nearest neighbor and spherical range queries
    corecore