15,364 research outputs found

    Photoassociation adiabatic passage of ultracold Rb atoms to form ultracold Rb_2 molecules

    Full text link
    We theoretically explore photoassociation by Adiabatic Passage of two colliding cold ^{85}Rb atoms in an atomic trap to form an ultracold Rb_2 molecule. We consider the incoherent thermal nature of the scattering process in a trap and show that coherent manipulations of the atomic ensemble, such as adiabatic passage, are feasible if performed within the coherence time window dictated by the temperature, which is relatively long for cold atoms. We show that a sequence of ~2*10^7 pulses of moderate intensities, each lasting ~750 ns, can photoassociate a large fraction of the atomic ensemble at temperature of 100 microkelvin and density of 10^{11} atoms/cm^3. Use of multiple pulse sequences makes it possible to populate the ground vibrational state. Employing spontaneous decay from a selected excited state, one can accumulate the molecules in a narrow distribution of vibrational states in the ground electronic potential. Alternatively, by removing the created molecules from the beam path between pulse sets, one can create a low-density ensemble of molecules in their ground ro-vibrational state.Comment: RevTex, 23 pages, 9 figure

    Cosmologies with variable parameters and dynamical cosmon: implications on the cosmic coincidence problem

    Get PDF
    Dynamical dark energy (DE) has been proposed to explain various aspects of the cosmological constant (CC) problem(s). For example, it is very difficult to accept that a strictly constant Lambda-term constitutes the ultimate explanation for the DE in our Universe. It is also hard to acquiesce in the idea that we accidentally happen to live in an epoch where the CC contributes an energy density value right in the ballpark of the rapidly diluting matter density. It should perhaps be more plausible to conceive that the vacuum energy, is actually a dynamical quantity as the Universe itself. More generally, we could even entertain the possibility that the total DE is in fact a mixture of vacuum energy and other dynamical components (e.g. fields, higher order terms in the effective action etc) which can be represented collectively by an effective entity X (dubbed the ``cosmon''). The ``cosmon'', therefore, acts as a dynamical DE component different from the vacuum energy. While it can actually behave phantom-like by itself, the overall DE fluid may effectively appear as standard quintessence, or even mimic at present an almost exact CC behavior. Thanks to the versatility of such cosmic fluid we can show that a composite DE system of this sort (``LXCDM'') may have a key to resolving the mysterious coincidence problem.Comment: LaTeX, 13 pages, 5 figure

    Incomplete Photonic Bandgap as Inferred from the Speckle Pattern of Scattered Light Waves

    Full text link
    Motivated by recent experiments on intensity correlations of the waves transmitted through disordered media, we demonstrate that the speckle pattern from disordered photonic crystal with incomplete band-gap represents a sensitive tool for determination the stop-band width. We establish the quantitative relation between this width and the {\em angualar anisotropy} of the intensity correlation function.Comment: 6 pages, 3 figure
    • …
    corecore