22 research outputs found

    Manufacturing 100-µm-thick silicon solar cells with efficiencies greater than 20% in a pilot production line

    No full text
    Reducing wafer thickness while increasing power conversion efficiency is the most effective way to reduce cost per Watt of a silicon photovoltaic module. Within the European project 20 percent efficiency on less than 100-mu m-thick, industrially feasible crystalline silicon solar cells ("20pl mu s"), we study the whole process chain for thin wafers, from wafering to module integration and life-cycle analysis. We investigate three different solar cell fabrication routes, categorized according to the temperature of the junction formation process and the wafer doping type: p-type silicon high temperature, n-type silicon high temperature and n-type silicon low temperature. For each route, an efficiency of 19.5% or greater is achieved on wafers less than 100 mu m thick, with a maximum efficiency of 21.1% on an 80-mu m-thick wafer. The n-type high temperature route is then transferred to a pilot production line, and a median solar cell efficiency of 20.0% is demonstrated on 100-mu m-thick wafers

    Novel trisubstituted harmine derivatives with original in vitro anticancer activity.

    Get PDF
    To overcome the intrinsic resistance of cancer cells to apoptotic stimuli, we designed and synthesized approximately 50 novel β-carbolines structurally related to harmine. Harmine is known for its anticancer properties and is a DYRK1A inhibitor. Of the synthesized compounds, the most active in terms of growth inhibition of five cancer cell lines are cytostatic and approximately 100 times more potent than harmine but demonstrated no DYRK1A inhibitory activity. These novel β-carbolines display similar growth inhibitory activity in cancer cells that are sensitive and resistant to apoptotic stimuli. Using ChemGPS-NP, we found that the more active β-carbolines are all more lipophilic and larger than the less active compounds. Lastly, on the basis of the NCI human tumor cell line anticancer drug screen and the NCI COMPARE algorithm, it appears that some of these compounds, including 5a and 5k, seem to act as protein synthesis inhibitors. © 2012 American Chemical Society.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore