38,996 research outputs found
Water vapor and silicon monoxide maser observations in the protoplanetary nebula OH 231.8+4
OH 231.8+4.2 is a well studied preplanetary nebula (pPN) around a binary
stellar system that shows a remarkable bipolar outflow. To study the structure
and kinematics of the inner 10-80 AU nebular regions we performed
high-resolution observations of the HO 6--5 and SiO
=2, =1--0 maser emissions with the Very Long Baseline Array. The absolute
position of both emission distributions were recovered using the phase
referencing technique, and accurately registered in HST optical images. HO
maser clumps are found to be distributed in two areas of 20 mas in size
spatially displaced by 60 milli-arcseconds along an axis oriented nearly
north-south. SiO masers are tentatively found to be placed between the two
HO maser emitting regions, probably indicating the position of the Mira
component of the system. The SiO maser emission traces an inner equatorial
component with a diameter of 12 AU, probably a disk rotating around the M-type
star. Outwards, we detect in the HO data a pair of polar caps, separated by
80 AU. We believe that the inner regions of the nebula probably have been
altered by the presence of the companion, leading to an equator-to-pole density
contrast that may explain the lack of HO masers and strong SiO maser
emission in the denser, equatorial regions.Comment: 5 pages, 1 figure, A&A accepte
A pilot search for mm-wavelength recombination lines from emerging ionized winds in pre-planetary nebulae candidates
We report the results from a pilot search for radio recombination line (RRL)
emission at millimeter wavelengths in a small sample of pre-planetary nebulae
(pPNe) and young PNe (yPNe) with emerging central ionized regions. Observations
of the H30\alpha, H31a, H39a, H41a, H48b, H49b, H51b, and H55g lines at 1 and
3mm have been performed with the IRAM 30 m radio telescope. These lines are
excellent probes of the dense inner (<~150 au) and heavily obscured regions of
these objects, where the yet unknown agents for PN-shaping originate. We
detected mm-RRLs in three objects: CRL 618, MWC 922, and M 2-9. For CRL 618,
the only pPN with previous published detections of H41a, H35a, and H30a
emission, we find significant changes in the line profiles indicating that
current observations are probing regions of the ionized wind with larger
expansion velocities and mass-loss rate than ~29 years ago. In the case of MWC
922, we observe a drastic transition from single-peaked profiles at 3mm to
double-peaked profiles at 1mm, which is consistent with maser amplification of
the highest frequency lines; the observed line profiles are compatible with
rotation and expansion of the ionized gas, probably arranged in a disk+wind
system around a ~5-10 Msun central mass. In M 2-9, the mm-RRL emission appears
to be tracing a recent mass outburst by one of the stars of the central binary
system. We present the results from non-LTE line and continuum radiative
transfer models, which enables us to constrain the structure, kinematics, and
physical conditions (electron temperature and density) of the ionized cores of
our sample. (abridged). We deduce mass-loss rates of ~1e-6-1e-7 Msun/yr, which
are significantly higher than the values adopted by stellar evolution models
currently in use and would result in a transition from the asymptotic giant
branch to the PN phase faster than hitherto assumed.Comment: Accepted by Astronomy and Astrophysics. 28 pages, including figure
Probing the massive star forming environment - a multiwavelength investigation of the filamentary IRDC G333.73+0.37
We present a multiwavelength study of the filamentary infrared dark cloud
(IRDC) G333.73+0.37. The region contains two distinct mid-infrared sources S1
and S2 connected by dark lanes of gas and dust. Cold dust emission from the
IRDC is detected at seven wavelength bands and we have identified 10 high
density clumps in the region. The physical properties of the clumps such as
temperature: 14.3-22.3 K and mass: 87-1530 M_sun are determined by fitting a
modified blackbody to the spectral energy distribution of each clump between
160 micron and 1.2 mm. The total mass of the IRDC is estimated to be $~4700
M_sun. The molecular line emission towards S1 reveals signatures of
protostellar activity. Low frequency radio emission at 1300 and 610 MHz is
detected towards S1 (shell-like) and S2 (compact morphology), confirming the
presence of newly formed massive stars in the IRDC. Photometric analysis of
near and mid-infrared point sources unveil the young stellar object population
associated with the cloud. Fragmentation analysis indicates that the filament
is supercritical. We observe a velocity gradient along the filament, that is
likely to be associated with accretion flows within the filament rather than
rotation. Based on various age estimates obtained for objects in different
evolutionary stages, we attempt to set a limit to the current age of this
cloud.Comment: 26 pages, 20 figures, accepted by Ap
Further ALMA observations and detailed modeling of the Red Rectangle
We present new high-quality ALMA observations of the Red Rectangle (a well
known post-AGB object) in C17O J=6-5 and H13CN J=4-3 line emission and results
from a new reduction of already published 13CO J=3-2 data. A detailed model
fitting of all the molecular line data, including previous maps and single-dish
spectra, was performed using a sophisticated code. These observations and the
corresponding modeling allowed us to deepen the analysis of the nebular
properties. We also stress the uncertainties in the model fitting.
We confirm the presence of a rotating equatorial disk and an outflow, which
is mainly formed of gas leaving the disk. The mass of the disk is ~ 0.01 Mo,
and that of the CO-rich outflow is ~ 10 times smaller. High temperatures of ~
100 K are derived for most components. From comparison of the mass values, we
roughly estimate the lifetime of the rotating disk, which is found to be of
about 10000 yr. Taking data of a few other post-AGB composite nebulae into
account, we find that the lifetimes of disks around post-AGB stars typically
range between 5000 and more than 20000 yr. The angular momentum of the disk is
found to be high, ~ 9 Mo AU km/s, which is comparable to that of the stellar
system at present. Our observations of H13CN show a particularly wide velocity
dispersion and indicate that this molecule is only abundant in the inner
Keplerian disk, at ~ 60 AU from the stellar system. We suggest that HCN is
formed in a dense photodissociation region (PDR) due to the UV excess known to
be produced by the stellar system, following chemical mechanisms that are well
established for interstellar medium PDRs and disks orbiting young stars. We
further suggest that this UV excess could lead to the efficient formation and
excitation of PAHs and other C-bearing macromolecules, whose emission is very
intense in the optical counterpart.Comment: Astronomy & Astrohysics, in press; 17 pages, 18 figures, 1 tabl
- …