81 research outputs found
Diophantine Approximation and applications in Interference Alignment
This paper is motivated by recent applications of Diophantine approximation in electronics, in particular, in the rapidly developing area of Interference Alignment. Some remarkable advances in this area give substantial credit to the fundamental Khintchine-Groshev Theorem and, in particular, to its far reaching generalisation for submanifolds of a Euclidean space. With a view towards the aforementioned applications, here we introduce and prove quantitative explicit generalisations of the Khintchine-Groshev Theorem for non-degenerate submanifolds of R n. The importance of such quantitative statements is explicitly discussed in Jafar's monograph [12, §4.7.1]
Rational approximation and arithmetic progressions
A reasonably complete theory of the approximation of an irrational by
rational fractions whose numerators and denominators lie in prescribed
arithmetic progressions is developed in this paper. Results are both, on the
one hand, from a metrical and a non-metrical point of view and, on the other
hand, from an asymptotic and also a uniform point of view. The principal
novelty is a Khintchine type theorem for uniform approximation in this context.
Some applications of this theory are also discussed
The Duffin-Schaeffer Conjecture with extra divergence II
This paper takes a new step in the direction of proving the Duffin-Schaeffer
Conjecture for measures arbitrarily close to Lebesgue. The main result is that
under a mild `extra divergence' hypothesis, the conjecture is true.Comment: 7 page
- …