8,120 research outputs found

    Complex periodic potentials with real band spectra

    Full text link
    This paper demonstrates that complex PT-symmetric periodic potentials possess real band spectra. However, there are significant qualitative differences in the band structure for these potentials when compared with conventional real periodic potentials. For example, while the potentials V(x)=i\sin^{2N+1}(x), (N=0, 1, 2, ...), have infinitely many gaps, at the band edges there are periodic wave functions but no antiperiodic wave functions. Numerical analysis and higher-order WKB techniques are used to establish these results.Comment: 8 pages, 7 figures, LaTe

    Quantum tunneling as a classical anomaly

    Full text link
    Classical mechanics is a singular theory in that real-energy classical particles can never enter classically forbidden regions. However, if one regulates classical mechanics by allowing the energy E of a particle to be complex, the particle exhibits quantum-like behavior: Complex-energy classical particles can travel between classically allowed regions separated by potential barriers. When Im(E) -> 0, the classical tunneling probabilities persist. Hence, one can interpret quantum tunneling as an anomaly. A numerical comparison of complex classical tunneling probabilities with quantum tunneling probabilities leads to the conjecture that as ReE increases, complex classical tunneling probabilities approach the corresponding quantum probabilities. Thus, this work attempts to generalize the Bohr correspondence principle from classically allowed to classically forbidden regions.Comment: 12 pages, 7 figure

    Spectral zeta functions of a 1D Schr\"odinger problem

    Full text link
    We study the spectral zeta functions associated to the radial Schr\"odinger problem with potential V(x)=x^{2M}+alpha x^{M-1}+(lambda^2-1/4)/x^2. Using the quantum Wronskian equation, we provide results such as closed-form evaluations for some of the second zeta functions i.e. the sum over the inverse eigenvalues squared. Also we discuss how our results can be used to derive relationships and identities involving special functions, using a particular 5F_4 hypergeometric series as an example. Our work is then extended to a class of related PT-symmetric eigenvalue problems. Using the fused quantum Wronskian we give a simple method for calculating the related spectral zeta functions. This method has a number of applications including the use of the ODE/IM correspondence to compute the (vacuum) nonlocal integrals of motion G_n which appear in an associated integrable quantum field theory.Comment: 15 pages, version

    Semiclassical analysis of a complex quartic Hamiltonian

    Full text link
    It is necessary to calculate the C operator for the non-Hermitian PT-symmetric Hamiltonian H=\half p^2+\half\mu^2x^2-\lambda x^4 in order to demonstrate that H defines a consistent unitary theory of quantum mechanics. However, the C operator cannot be obtained by using perturbative methods. Including a small imaginary cubic term gives the Hamiltonian H=\half p^2+\half \mu^2x^2+igx^3-\lambda x^4, whose C operator can be obtained perturbatively. In the semiclassical limit all terms in the perturbation series can be calculated in closed form and the perturbation series can be summed exactly. The result is a closed-form expression for C having a nontrivial dependence on the dynamical variables x and p and on the parameter \lambda.Comment: 4 page

    New Quasi-Exactly Solvable Sextic Polynomial Potentials

    Full text link
    A Hamiltonian is said to be quasi-exactly solvable (QES) if some of the energy levels and the corresponding eigenfunctions can be calculated exactly and in closed form. An entirely new class of QES Hamiltonians having sextic polynomial potentials is constructed. These new Hamiltonians are different from the sextic QES Hamiltonians in the literature because their eigenfunctions obey PT-symmetric rather than Hermitian boundary conditions. These new Hamiltonians present a novel problem that is not encountered when the Hamiltonian is Hermitian: It is necessary to distinguish between the parametric region of unbroken PT symmetry, in which all of the eigenvalues are real, and the region of broken PT symmetry, in which some of the eigenvalues are complex. The precise location of the boundary between these two regions is determined numerically using extrapolation techniques and analytically using WKB analysis

    Solution of the Skyrme HF+BCS equation on a 3D mesh. II. A new version of the Ev8 code

    Full text link
    We describe a new version of the EV8 code that solves the nuclear Skyrme-Hartree-Fock+BCS problem using a 3-dimensional cartesian mesh. Several new features have been implemented with respect to the earlier version published in 2005. In particular, the numerical accuracy has been improved for a given mesh size by (i) implementing a new solver to determine the Coulomb potential for protons (ii) implementing a more precise method to calculate the derivatives on a mesh that had already been implemented earlier in our beyond-mean-field codes. The code has been made very flexible to enable the use of a large variety of Skyrme energy density functionals that have been introduced in the last years. Finally, the treatment of the constraints that can be introduced in the mean-field equations has been improved. The code Ev8 is today the tool of choice to study the variation of the energy of a nucleus from its ground state to very elongated or triaxial deformations with a well-controlled accuracy.Comment: 24 pages, 3 figure
    • …
    corecore