2,016 research outputs found
Removing multiple outliers and single-crystal artefacts from X-ray diffraction computed tomography data
This paper reports a simple but effective filtering approach to deal with single-crystal artefacts in X-ray diffraction computed tomography (XRD-CT). In XRD-CT, large crystallites can produce spots on top of the powder diffraction rings, which, after azimuthal integration and tomographic reconstruction, lead to line/streak artefacts in the tomograms. In the simple approach presented here, the polar transform is taken of collected two-dimensional diffraction patterns followed by directional median/mean filtering prior to integration. Reconstruction of one-dimensional diffraction projection data sets treated in such a way leads to a very significant improvement in reconstructed image quality for systems that exhibit powder spottiness arising from large crystallites. This approach is not computationally heavy which is an important consideration with big data sets such as is the case with XRD-CT. The method should have application to two-dimensional X-ray diffraction data in general where such spottiness arises
Interlaced X-ray diffraction computed tomography
An X-ray diffraction computed tomography data-collection strategy that allows, post experiment, a choice between temporal and spatial resolution is reported. This strategy enables time-resolved studies on comparatively short timescales, or alternatively allows for improved spatial resolution if the system under study, or components within it, appear to be unchanging. The application of the method for studying an Mn–Na–W/SiO2 fixed-bed reactor in situ is demonstrated. Additionally, the opportunities to improve the data-collection strategy further, enabling post-collection tuning between statistical, temporal and spatial resolutions, are discussed. In principle, the interlaced scanning approach can also be applied to other pencil-beam tomographic techniques, like X-ray fluorescence computed tomography, X-ray absorption fine structure computed tomography, pair distribution function computed tomography and tomographic scanning transmission X-ray microscopy
In situ X-ray Diffraction Computed Tomography studies examining the thermal and chemical stabilities of working Ba0.5Sr0.5Co0.8Fe0.2O3-δ membranes during oxidative coupling of methane
In this study we present the results from two in situ X-ray diffraction computed tomography experiments of catalytic membrane reactors (CMRs) using Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) hollow fibre membranes and Na-Mn-W/SiO2 catalyst during the oxidative coupling of methane (OCM) reaction. The negative impact of CO2, when added to the inlet gas stream, is seen to be mainly related to the C2+ yield, while no evidence of carbonate phase(s) formation is found during the OCM experiments. The main degradation mechanism of the CMR is suggested to be primarily associated with the solid-state evolution of the BSCF phase rather than the presence of CO2. Specifically, in situ XRD-CT and post-mortem SEM/EDX measurements revealed a collapse of the cubic BSCF phase, formation of secondary phases, which include needle-like structures and hexagonal Ba6Co4O12, and formation of a BaWO4 layer, the latter being a result of chemical interaction between the membrane and catalyst materials at high temperatures
Fermions and Disorder in Ising and Related Models in Two Dimensions
The aspects of phase transitions in the two-dimensional Ising models modified
by quenched and annealed site disorder are discussed in the framework of
fermionic approach based on the reformulation of the problem in terms of
integrals with anticommuting Grassmann variables.Comment: 11 pages, 1 table, no figures. The discussion is merely based on a
talk given at the International Bogoliubov Conference on Problems of
Theoretical and Mathematical Physics, MIRAS--JINR, Moscow--Dubna, Russia,
August 21--27, 200
Nonlinear acousto-electric transport in a two-dimensional electron system
We study both theoretically and experimentally the nonlinear interaction
between an intense surface acoustic wave and a two-dimensional electron plasma
in semiconductor-piezocrystal hybrid structures. The experiments on hybrid
systems exhibit strongly nonlinear acousto-electric effects. The plasma turns
into moving electron stripes, the acousto-electric current reaches its maximum,
and the sound absorption strongly decreases. To describe the nonlinear
phenomena, we develop a coupled-amplitude method for a two-dimensional system
in the strongly nonlinear regime of interaction. At low electron densities the
absorption coefficient decreases with increasing sound intensity, whereas at
high electron density the absorption coefficient is not a monotonous function
of the sound intensity. High-harmonic generation coefficients as a function of
the sound intensity have a nontrivial behavior. Theory and experiment are found
to be in a good agreement.Comment: 27 pages, 6 figure
Investigating the beneficial traits of Trichoderma hamatum GD12 for sustainable agriculture-insights from genomics.
This is the final version of the article. Available from the publisher via the DOI in this record.Trichoderma hamatum strain GD12 is unique in that it can promote plant growth, activate biocontrol against pre- and post-emergence soil pathogens and can induce systemic resistance to foliar pathogens. This study extends previous work in lettuce to demonstrate that GD12 can confer beneficial agronomic traits to other plants, providing examples of plant growth promotion in the model dicot, Arabidopsis thaliana and induced foliar resistance to Magnaporthe oryzae in the model monocot rice. We further characterize the lettuce-T. hamatum interaction to show that bran extracts from GD12 and an N-acetyl-β-D-glucosamindase-deficient mutant differentially promote growth in a concentration dependent manner, and these differences correlate with differences in the small molecule secretome. We show that GD12 mycoparasitises a range of isolates of the pre-emergence soil pathogen Sclerotinia sclerotiorum and that this interaction induces a further increase in plant growth promotion above that conferred by GD12. To understand the genetic potential encoded by T. hamatum GD12 and to facilitate its use as a model beneficial organism to study plant growth promotion, induced systemic resistance and mycoparasitism we present de novo genome sequence data. We compare GD12 with other published Trichoderma genomes and show that T. hamatum GD12 contains unique genomic regions with the potential to encode novel bioactive metabolites that may contribute to GD12's agrochemically important traits.This work was supported by a Biotechnology and Biological
Sciences Research Council grant BB/I014691/1 to Murray Grant
and Chris R. Thornto
3D printed catalytic reactors for aerobic selective oxidation of benzyl alcohol into benzaldehyde in continuous multiphase flow
In this work, novel, patterned monolithic reactors were devised to explore more efficient routes for reactant conversion in order to investigate their potential to replace the packed bed and batch reactors conventionally employed in chemical industries. Well-defined bimetallic formulations were developed to substitute platinum group metals and critical raw materials such as palladium and cobalt, at least in part, by less active, but more sustainable and cost-effective metals such as earth-abundant iron. FePd and FeCo based monoliths were 3D printed and stacked in a continuous flow tubular reactor for testing the selective oxidation of benzyl alcohol (BA) into benzaldehyde (BZ) under mild conditions (80–100 °C and atmospheric pressure). The novel monolithic reactors were evaluated against current state-of-the-art reactor technologies, conventional packed bed and batch reactors. The FeCo- and FePd-Al2O3-supported monolithic catalyst beds showed higher conversion and TOF than their packed bed counterparts under the same operating conditions, revealing the impact of the novel design on both regular geometry and composition. What is of particular interest in the catalytic measurements shown is that the combined stacking of two monoliths in a flow reactor, Al2O3-supported Fe and GO-supported FePd catalysts, can significantly improve the performance with an increase in TOF of up to 90% in comparison to their FePd analogues. Mathematical modelling was used to obtain additional insights into the physical and chemical processes governing the rate of BA conversion. It was found that due to the flow regime inside the microchannels, an axial dispersion model was appropriate, which allowed for mapping the concentration profiles of the reactants and products within the respective monolith geometries
Multi-length scale 5D diffraction imaging of Ni-Pd/CeO2-ZrO2/Al2O3 catalyst during partial oxidation of methane
A 5D diffraction imaging experiment (with 3D spatial, 1D time/imposed operating conditions and 1D scattering signal) was performed with a Ni–Pd/CeO2–ZrO2/Al2O3 catalyst. The catalyst was investigated during both activation and partial oxidation of methane (POX). The spatio-temporal resolved diffraction data allowed us to obtain unprecedented insight into the behaviour and fate of the various metal and metal oxide species and how this is affected by the heterogeneity across catalyst particles. We show firstly, how Pd promotion although facilitating Ni reduction, over time leads to formation of unstable Ni–Pd metallic alloy, rendering the impact of Pd beyond the initial reduction less important. Furthermore, in the core of the particles, where the metallic Ni is primarily supported on Al2O3, poor resistance towards coke deposition was observed. We identified that this preceded via the formation of an active yet metastable interstitial solid solution of Ni–C and led to the exclusive formation of graphitic carbon, the only polymorph of coke observed. In contrast, at the outermost part of the catalyst particle, where Ni is predominantly supported on CeO2–ZrO2, the graphite formation was mitigated but sintering of Ni crystallites was more severe
- …