2,265 research outputs found

    Influence of Rashba and Dresselhaus spin-orbit interactions of equal strengths on electron states in a circular quantum ring in the presence of a magnetic field

    Full text link
    Solutions of the Schr\"odinger equation are obtained for an electron in a two-dimensional circular semiconductor quantum ring in the presence of both external uniform constant magnetic field and the Rashba and Dresselhaus spin-orbit interactions of equal strengths. Confinement is simulated by a realistic potential well of a finite depth. The dependence of the energy levels on a magnetic field strength, strength of spin-orbit interaction and a relative ring width is presented.Comment: 6 pages, 2 figures, 1 tabl

    Rashba spin-orbit interaction in a circular quantum ring in the presence of a magnetic field

    Full text link
    Exact wave functions and energy levels are obtained for an electron in a two-dimensional semiconductor circular quantum ring with a confining potential of finite depth in the presence of both an external magnetic field and the Rashba spin-orbit interaction.Comment: 7 pages, 4 figures, 2 table

    Mean-field instabilities and cluster formation in nuclear reactions

    Full text link
    We review recent results on intermediate mass cluster production in heavy ion collisions at Fermi energy and in spallation reactions. Our studies are based on modern transport theories, employing effective interactions for the nuclear mean-field and incorporating two-body correlations and fluctuations. Namely we will consider the Stochastic Mean Field (SMF) approach and the recently developed Boltzmann-Langevin One Body (BLOB) model. We focus on cluster production emerging from the possible occurrence of low-density mean-field instabilities in heavy ion reactions. Within such a framework, the respective role of one and two-body effects, in the two models considered, will be carefully analysed. We will discuss, in particular, fragment production in central and semi-peripheral heavy ion collisions, which is the object of many recent experimental investigations. Moreover, in the context of spallation reactions, we will show how thermal expansion may trigger the development of mean-field instabilities, leading to a cluster formation process which competes with important re-aggregation effects

    Probing the Nuclear Symmetry Energy with Heavy Ion Collisions

    Full text link
    Heavy Ion Collisions (HIC) represent a unique tool to probe the in-medium nuclear interaction in regions away from saturation. In this report we present a selection of new reaction observables in dissipative collisions particularly sensitive to the symmetry term of the nuclear Equation of State (IsoEoSIso-EoS). We will first discuss the Isospin Equilibration Dynamics. At low energies this manifests via the recently observed Dynamical Dipole Radiation, due to a collective neutron-proton oscillation with the symmetry term acting as a restoring force. At higher beam energies Iso-EoS effects will be seen in an Isospin Diffusion mechanism, via Imbalance Ratio Measurements, in particular from correlations to the total kinetic energy loss. For fragmentation reactions in central events we suggest to look at the coupling between isospin distillation and radial flow. In Neck Fragmentation reactions important Iso-EoS information can be obtained from fragment isospin content, velocity and alignement correlations. The high density symmetry term can be probed from isospin effects on heavy ion reactions at relativistic energies (few AGeV range), in particular for high transverse momentum selections of the reaction products. Rather isospin sensitive observables are proposed from nucleon/cluster emissions, collective flows and meson production. The possibility to shed light on the controversial neutron/proton effective mass splitting in asymmetric matter is also suggested. A large symmetry repulsion at high baryon density will also lead to an "earlier" hadron-deconfinement transition in n-rich matter. The binodal transition line of the (T,\rho_B) diagram is lowered to a region accessible through heavy ion collisions in the energy range of the new planned facilities, e.g. the FAIR/NICA projects. Some observable effects of the formation of a Mixed Phase are suggested, in particular a Neutron Trapping mechanism. The dependence of the results on a suitable treatment of the isovector part of the interaction in effective QCD Lagrangian approaches is critically discussed. We stress the interest of this study in nuclear astrophysics, in particular for supernovae explosions and neutron star structure, where the knowledge of the Iso-EoS is important at low as well as at high baryon density.Comment: 52 pages, 28 figures, topical review submitted to J. Phys. G: Nucl. Phys (IOP Latex

    Isospin in fragment production

    Full text link
    Based on a general approach to binary systems we show that in the low density region asymmetric nuclear matter (ANM) is unstable only against isoscalarlike fluctuations. The physical meaning of the thermodynamical chemical and mechanical instabilities is related to the inequality relations verified by the strength of interaction among different components. Relevance of these results in bulk and neck fragmentation is discussed.Comment: 8 pages, 5 Postscript figures, talk at Cortona 2002 Conference, Oct.7-Oct.12, Italy, World Scientific (in press
    corecore