934 research outputs found
Software digitizer for high granular gaseous detector
A sampling calorimeter equipped with gaseous sensor layers with digital
readout is near perfect for "Particle Flow Algorithm" approach, since it is
homogeneous over large surfaces, robust, cost efficient, easily segmentable to
any readout pad dimension and size and almost insensitive to neutrons. The
response of a finely segmented digital calorimeter is characterized by track
efficiency and multiplicity. Monte Carlo (MC) programs such as GEANT4 simulate
with high precision the energy deposited by particles. The sensor and
electronic response associated to a pad are calculated in a separate
"digitization" process. We developed a general method for simulating the pad
response, a digitization, reproducing efficiency and multiplicity, using the
spatial information from a simulation done at higher granularity. The
digitization method proposed here has been applied to gaseous detectors
including Glass Resistive Plate Chambers (GRPC) and MicroMegas. Validating the
method on test beam data, experimental observables such as efficiency,
multiplicity and mean number of hits at different thresholds have been
reproduced with high precision.Comment: Proceeding for MPGD 201
Performance of Glass Resistive Plate Chambers for a high granularity semi-digital calorimeter
A new design of highly granular hadronic calorimeter using Glass Resistive
Plate Chambers (GRPCs) with embedded electronics has been proposed for the
future International Linear Collider (ILC) experiments. It features a 2-bit
threshold semi-digital read-out. Several GRPC prototypes with their electronics
have been successfully built and tested in pion beams. The design of these
detectors is presented along with the test results on efficiency, pad
multiplicity, stability and reproducibility.Comment: 16 pages, 15 figure
Construction and commissioning of a technological prototype of a high-granularity semi-digital hadronic calorimeter
A large prototype of 1.3m3 was designed and built as a demonstrator of the
semi-digital hadronic calorimeter (SDHCAL) concept proposed for the future ILC
experiments. The prototype is a sampling hadronic calorimeter of 48 units. Each
unit is built of an active layer made of 1m2 Glass Resistive Plate
Chamber(GRPC) detector placed inside a cassette whose walls are made of
stainless steel. The cassette contains also the electronics used to read out
the GRPC detector. The lateral granularity of the active layer is provided by
the electronics pick-up pads of 1cm2 each. The cassettes are inserted into a
self-supporting mechanical structure built also of stainless steel plates
which, with the cassettes walls, play the role of the absorber. The prototype
was designed to be very compact and important efforts were made to minimize the
number of services cables to optimize the efficiency of the Particle Flow
Algorithm techniques to be used in the future ILC experiments. The different
components of the SDHCAL prototype were studied individually and strict
criteria were applied for the final selection of these components. Basic
calibration procedures were performed after the prototype assembling. The
prototype is the first of a series of new-generation detectors equipped with a
power-pulsing mode intended to reduce the power consumption of this highly
granular detector. A dedicated acquisition system was developed to deal with
the output of more than 440000 electronics channels in both trigger and
triggerless modes. After its completion in 2011, the prototype was commissioned
using cosmic rays and particles beams at CERN.Comment: 49 pages, 41 figure
Performance of the first prototype of the CALICE scintillator strip electromagnetic calorimeter
A first prototype of a scintillator strip-based electromagnetic calorimeter
was built, consisting of 26 layers of tungsten absorber plates interleaved with
planes of 45x10x3 mm3 plastic scintillator strips. Data were collected using a
positron test beam at DESY with momenta between 1 and 6 GeV/c. The prototype's
performance is presented in terms of the linearity and resolution of the energy
measurement. These results represent an important milestone in the development
of highly granular calorimeters using scintillator strip technology. This
technology is being developed for a future linear collider experiment, aiming
at the precise measurement of jet energies using particle flow techniques
Shower development of particles with momenta from 15 GeV to 150 GeV in the CALICE scintillator-tungsten hadronic calorimeter
We present a study of showers initiated by electrons, pions, kaons, and
protons with momenta from 15 GeV to 150 GeV in the highly granular CALICE
scintillator-tungsten analogue hadronic calorimeter. The data were recorded at
the CERN Super Proton Synchrotron in 2011. The analysis includes measurements
of the calorimeter response to each particle type as well as measurements of
the energy resolution and studies of the longitudinal and radial shower
development for selected particles. The results are compared to Geant4
simulations (version 9.6.p02). In the study of the energy resolution we include
previously published data with beam momenta from 1 GeV to 10 GeV recorded at
the CERN Proton Synchrotron in 2010.Comment: 35 pages, 21 figures, 8 table
Search for Doubly-Charged Higgs Boson Production at HERA
A search for the single production of doubly-charged Higgs bosons H^{\pm \pm}
in ep collisions is presented. The signal is searched for via the Higgs decays
into a high mass pair of same charge leptons, one of them being an electron.
The analysis uses up to 118 pb^{-1} of ep data collected by the H1 experiment
at HERA. No evidence for doubly-charged Higgs production is observed and mass
dependent upper limits are derived on the Yukawa couplings h_{el} of the Higgs
boson to an electron-lepton pair. Assuming that the doubly-charged Higgs only
decays into an electron and a muon via a coupling of electromagnetic strength
h_{e \mu} = \sqrt{4 \pi \alpha_{em}} = 0.3, a lower limit of 141 GeV on the
H^{\pm\pm} mass is obtained at the 95% confidence level. For a doubly-charged
Higgs decaying only into an electron and a tau and a coupling h_{e\tau} = 0.3,
masses below 112 GeV are ruled out.Comment: 15 pages, 3 figures, 1 tabl
Forward pi^0 Production and Associated Transverse Energy Flow in Deep-Inelastic Scattering at HERA
Deep-inelastic positron-proton interactions at low values of Bjorken-x down
to x \approx 4.10^-5 which give rise to high transverse momentum pi^0 mesons
are studied with the H1 experiment at HERA. The inclusive cross section for
pi^0 mesons produced at small angles with respect to the proton remnant (the
forward region) is presented as a function of the transverse momentum and
energy of the pi^0 and of the four-momentum transfer Q^2 and Bjorken-x.
Measurements are also presented of the transverse energy flow in events
containing a forward pi^0 meson. Hadronic final state calculations based on QCD
models implementing different parton evolution schemes are confronted with the
data.Comment: 27 pages, 8 figures and 3 table
Hadron shower decomposition in the highly granular CALICE analogue hadron calorimeter
The spatial development of hadronic showers in the CALICE scintillator-steel
analogue hadron calorimeter is studied using test beam data collected at CERN
and FNAL for single positive pions and protons with initial momenta in the
range from 10 to 80 GeV/c. Both longitudinal and radial development of hadron
showers are parametrised with two-component functions. The parametrisation is
fit to test beam data and simulations using the QGSP_BERT and FTFP_BERT physics
lists from Geant4 version 9.6. The parameters extracted from data and simulated
samples are compared for the two types of hadrons. The response to pions and
the ratio of the non-electromagnetic to the electromagnetic calorimeter
response, h/e, are estimated using the extrapolation and decomposition of the
longitudinal profiles.Comment: 38 pages, 19 figures, 5 tables; author list changed; submitted to
JINS
- …