30 research outputs found
The Gravity Dual of a Density Matrix
For a state in a quantum field theory on some spacetime, we can associate a
density matrix to any subset of a given spacelike slice by tracing out the
remaining degrees of freedom. In the context of the AdS/CFT correspondence, if
the original state has a dual bulk spacetime with a good classical description,
it is natural to ask how much information about the bulk spacetime is carried
by the density matrix for such a subset of field theory degrees of freedom. In
this note, we provide several constraints on the largest region that can be
fully reconstructed, and discuss specific proposals for the geometric
construction of this dual region.Comment: 19 pages, LaTeX, 8 figures, v2: footnote and reference adde
Pion light cone wave function in the non-local NJL model
We use the simple instanton motivated NJL-type model to calculate the leading
twist pion light cone wave function. The model consists in employing the
momentum dependent quark mass in the quark loop entering the definition of the
wave function. The result is analytical up to a solution of a certain algebraic
equation. Various properties including the kT dependence of the pion wave
function are discussed. The resulting kT integrated wave function is not
asymptotic and is in agreement with recent analysis of the CLEO data.Comment: 9 pages, 12 figures, formulas (23-25) corrected, typos correcte
Making predictions in the multiverse
I describe reasons to think we are living in an eternally inflating
multiverse where the observable "constants" of nature vary from place to place.
The major obstacle to making predictions in this context is that we must
regulate the infinities of eternal inflation. I review a number of proposed
regulators, or measures. Recent work has ruled out a number of measures by
showing that they conflict with observation, and focused attention on a few
proposals. Further, several different measures have been shown to be
equivalent. I describe some of the many nontrivial tests these measures will
face as we learn more from theory, experiment, and observation.Comment: 20 pages, 3 figures; invited review for Classical and Quantum
Gravity; v2: references improve
Entanglement Entropy from a Holographic Viewpoint
The entanglement entropy has been historically studied by many authors in
order to obtain quantum mechanical interpretations of the gravitational
entropy. The discovery of AdS/CFT correspondence leads to the idea of
holographic entanglement entropy, which is a clear solution to this important
problem in gravity. In this article, we would like to give a quick survey of
recent progresses on the holographic entanglement entropy. We focus on its
gravitational aspects, so that it is comprehensible to those who are familiar
with general relativity and basics of quantum field theory.Comment: Latex, 30 pages, invited review for Classical and Quantum Gravity,
minor correction