60 research outputs found

    Photoionization accompanied by excitation at intermediate photon energies

    Full text link
    We calculate the photoionization with excitation-to photoionization ratios for atomic helium and heliumlike ions at intermediate values of the photon energies. The final state interactions between the electrons are included in the lowest order of their Sommerfeld parameter. This enables us, in contrast to purely numerical calculations to investigate the roles of various mechanisms contributing beyond the high energy limit. The system of the two bound electrons is described by the functions obtained by the Correlation Function Hyperspherical Harmonic Method. For the case of heliumlike ions we present the high energy limits as power expansion in inverse charge of the nucleus. We analyse the role of excitation of states with the nonzero orbital momenta.Comment: 3 figure

    Analytic calculation of energies and wave functions of the quartic and pure quartic oscillators

    Full text link
    Ground state energies and wave functions of quartic and pure quartic oscillators are calculated by first casting the Schr\"{o}dinger equation into a nonlinear Riccati form and then solving that nonlinear equation analytically in the first iteration of the quasilinearization method (QLM). In the QLM the nonlinear differential equation is solved by approximating the nonlinear terms by a sequence of linear expressions. The QLM is iterative but not perturbative and gives stable solutions to nonlinear problems without depending on the existence of a smallness parameter. Our explicit analytic results are then compared with exact numerical and also with WKB solutions and it is found that our ground state wave functions, using a range of small to large coupling constants, yield a precision of between 0.1 and 1 percent and are more accurate than WKB solutions by two to three orders of magnitude. In addition, our QLM wave functions are devoid of unphysical turning point singularities and thus allow one to make analytical estimates of how variation of the oscillator parameters affects physical systems that can be described by the quartic and pure quartic oscillators.Comment: 8 pages, 12 figures, 1 tabl

    Two-electron photoionization of endohedral atoms

    Full text link
    Using He@C60He@C_{60} as an example, we demonstrate that static potential of the fullerene core essentially alters the cross section of the two-electron ionization differential in one-electron energy dσ++(ω)/dϵd\sigma ^{++}(\omega )/d\epsilon . We found that at high photon energy prominent oscillations appear in it due to reflection of the second, slow electron wave on the C60% C_{60} shell, which "dies out" at relatively high ϵ\epsilon values, of about 2÷\div 3 two-electron ionization potentials. The results were presented for ratios RC60(ω,ϵ)≡dσ++(ω,ϵ)/dσa++(ω,ϵ)R_{C_{60}}(\omega ,\epsilon)\equiv d\sigma ^{++}(\omega ,\epsilon)/d\sigma ^{a++}(\omega,\epsilon), where dσa++(ω,ϵ)/dϵd\sigma ^{a++}(\omega,\epsilon)/d\epsilon is the two-electron differential photoionization cross section. We have calculated the ratio Ri,ful=σi++(ω)/σia++(ω)R_{i,ful}= \sigma_{i} ^{++}(\omega)/\sigma_{i}^{a++}(\omega), that accounts for reflection of both photoelectrons by the C60C_{60} shell. We have calculated also the value of two-electron photoionization cross section σ++(ω)\sigma ^{++}(\omega) and found that this value is close to that of an isolated HeHe atom.Comment: 13 pages, 4 figure

    Relativistic quasipotential equations with u-channel exchange interactions

    Get PDF
    Various quasipotential two-body scattering equations are studied at the one-loop level for the case of tt- and uu-channel exchange potentials. We find that the quasipotential equations devised to satisfy the one-body limit for the tt-channel exchange potential can be in large disagreement with the field-theoretical prediction in the case of uu-channel exchange interactions. Within the spectator model, the description of the uu-channel case improves if another choice of the spectator particle is made. Since the appropriate choice of the spectator depends strongly on the type of interaction used, one faces a problem when both types of interaction are contained in the potential. Equal-time formulations are presented, which, in the light-heavy particle system corresponding to the mass situation of the πN\pi N system, approximate in a reasonable way the field-theoretical result for both types of interactions.Comment: Revtex, 20 pages, 12 PostScript figures, to appear in Phys. Rev.
    • …
    corecore