1,635 research outputs found

    Emergence of chaotic attractor and anti-synchronization for two coupled monostable neurons

    Full text link
    The dynamics of two coupled piece-wise linear one-dimensional monostable maps is investigated. The single map is associated with Poincare section of the FitzHugh-Nagumo neuron model. It is found that a diffusive coupling leads to the appearance of chaotic attractor. The attractor exists in an invariant region of phase space bounded by the manifolds of the saddle fixed point and the saddle periodic point. The oscillations from the chaotic attractor have a spike-burst shape with anti-phase synchronized spiking.Comment: To be published in CHAO

    Dynamic image recognition in a spiking neuron network supplied by astrocytes

    Full text link
    Mathematical model of spiking neuron network (SNN) supplied by astrocytes is investigated. The astrocytes are specific type of brain cells which are not electrically excitable but inducing chemical modulations of neuronal firing. We analyzed how the astrocytes influence on images encoded in the form of dynamic spiking pattern of the SNN. Serving at much slower time scale the astrocytic network interacting with the spiking neurons can remarkably enhance the image recognition quality. Spiking dynamics was affected by noise distorting the information image. We demonstrated that the activation of astrocyte can significantly suppress noise influence improving dynamic image representation by the SNN.Comment: arXiv admin note: text overlap with arXiv:2210.0101

    Diffraction radiation from a screen of finite conductivity

    Full text link
    An exact solution has been found for the problem of diffraction radiation appearing when a charged particle moves perpendicularly to a thin finite screen having arbitrary conductivity and frequency dispersion. Expressions describing the Diffraction and Cherenkov emission mechanisms have been obtained for the spectral-angular forward and backward radiation densities.Comment: 6 pages, 4 figure

    Non-language factors and language evolution

    Get PDF
    This paper is devoted to the description of the functioning and development of the language system seen in correlation with the influence of non-language factor

    Astrocyte control bursting mode of spiking neuron network with memristor-implemented plasticity

    Full text link
    A mathematical model of a spiking neuron network accompanied by astrocytes is considered. The network is composed of excitatory and inhibitory neurons with synaptic connections supplied by a memristor-based model of plasticity. Another mechanism for changing the synaptic connections involves astrocytic regulations using the concept of tripartite synapses. In the absence of memristor-based plasticity, the connections between these neurons drive the network dynamics into a burst mode, as observed in many experimental neurobiological studies when investigating living networks in neuronal cultures. The memristive plasticity implementing synaptic plasticity in inhibitory synapses results in a shift in network dynamics towards an asynchronous mode. Next,it is found that accounting for astrocytic regulation in glutamatergic excitatory synapses enable the restoration of 'normal' burst dynamics. The conditions and parameters of such astrocytic regulation's impact on burst dynamics established

    Dynamical diffraction in sinusoidal potentials: uniform approximations for Mathieu functions

    Get PDF
    Eigenvalues and eigenfunctions of Mathieu's equation are found in the short wavelength limit using a uniform approximation (method of comparison with a `known' equation having the same classical turning point structure) applied in Fourier space. The uniform approximation used here relies upon the fact that by passing into Fourier space the Mathieu equation can be mapped onto the simpler problem of a double well potential. The resulting eigenfunctions (Bloch waves), which are uniformly valid for all angles, are then used to describe the semiclassical scattering of waves by potentials varying sinusoidally in one direction. In such situations, for instance in the diffraction of atoms by gratings made of light, it is common to make the Raman-Nath approximation which ignores the motion of the atoms inside the grating. When using the eigenfunctions no such approximation is made so that the dynamical diffraction regime (long interaction time) can be explored.Comment: 36 pages, 16 figures. This updated version includes important references to existing work on uniform approximations, such as Olver's method applied to the modified Mathieu equation. It is emphasised that the paper presented here pertains to Fourier space uniform approximation
    corecore