36 research outputs found

    Casimir interactions of an object inside a spherical metal shell

    Get PDF
    We investigate the electromagnetic Casimir interactions of an object contained within an otherwise empty, perfectly conducting spherical shell. For a small object we present analytical calculations of the force, which is directed away from the center of the cavity, and the torque, which tends to align the object opposite to the preferred alignment outside the cavity. For a perfectly conducting sphere as the interior object, we compute the corrections to the proximity force approximation (PFA) numerically. In both cases the results for the interior configuration match smoothly onto those for the corresponding exterior configuration.Comment: 4 pages, 3 figure

    Casimir potential of a compact object enclosed by a spherical cavity

    Get PDF
    We study the electromagnetic Casimir interaction of a compact object contained inside a closed cavity of another compact object. We express the interaction energy in terms of the objects' scattering matrices and translation matrices that relate the coordinate systems appropriate to each object. When the enclosing object is an otherwise empty metallic spherical shell, much larger than the internal object, and the two are sufficiently separated, the Casimir force can be expressed in terms of the static electric and magnetic multipole polarizabilities of the internal object, which is analogous to the Casimir-Polder result. Although it is not a simple power law, the dependence of the force on the separation of the object from the containing sphere is a universal function of its displacement from the center of the sphere, independent of other details of the object's electromagnetic response. Furthermore, we compute the exact Casimir force between two metallic spheres contained one inside the other at arbitrary separations. Finally, we combine our results with earlier work on the Casimir force between two spheres to obtain data on the leading order correction to the Proximity Force Approximation for two metallic spheres both outside and within one another.Comment: 12 pages, 6 figure

    The Casimir Energy for a Hyperboloid Facing a Plate in the Optical Approximation

    Full text link
    We study the Casimir energy of a massless scalar field that obeys Dirichlet boundary conditions on a hyperboloid facing a plate. We use the optical approximation including the first six reflections and compare the results with the predictions of the proximity force approximation and the semi-classical method. We also consider finite size effects by contrasting the infinite with a finite plate. We find sizable and qualitative differences between the new optical method and the more traditional approaches.Comment: v2: 14 pages, 11 eps figures; typo in eq. (21) removed, clarification added, fig. 10 improved; version published in Phys. Rev.

    Hamiltonian structures of fermionic two-dimensional Toda lattice hierarchies

    Full text link
    By exhibiting the corresponding Lax pair representations we propose a wide class of integrable two-dimensional (2D) fermionic Toda lattice (TL) hierarchies which includes the 2D N=(2|2) and N=(0|2) supersymmetric TL hierarchies as particular cases. We develop the generalized graded R-matrix formalism using the generalized graded bracket on the space of graded operators with involution generalizing the graded commutator in superalgebras, which allows one to describe these hierarchies in the framework of the Hamiltonian formalism and construct their first two Hamiltonian structures. The first Hamiltonian structure is obtained for both bosonic and fermionic Lax operators while the second Hamiltonian structure is established for bosonic Lax operators only.Comment: 12 pages, LaTeX, the talks delivered at the International Workshop on Classical and Quantum Integrable Systems (Dubna, January 24 - 28, 2005) and International Conference on Theoretical Physics (Moscow, April 11 - 16, 2005

    Geometrical symmetries of the universal equation

    No full text
    It is shown that the group of geometrical symmetries of the Universal equation of D-dimensional space coincides with SL(D + 1, R).
    corecore