19 research outputs found

    Fractographic characterization of Al2O3p particulates reinforced Al2014 alloy composites subjected to tensile loading

    Get PDF
    In the current investigation, efforts are being made to produce an Al2014-Al2O3p composite with variable particle size of 88 mm by liquid stir casting route. 9, 12 and 15 weight proportions of Al2O3p were added to the Al2014 base alloy. By using SEM and EDS testing, microstructural studies have been conducted. Al2014-9, 12 and 15 weight proportion of Al2O3p composites mechanical behavior is determined in line with ASTM standards. Electron microscopic images showed that alumina (Al2O3p) particles are dispersed uniformly within the Al2014 composite matrix. EDS study confirmed the proximity of Al and O elements to composites reinforced by Al2O3p. It is also found that Al2014-Al2O3p composite hardness, UTS, and yield strength are improved by the addition of 9, 12 and 15 weight proportion of Al2O3p. Due to the addition of alumina particles in the Al2014 matrix alloy, the ductility of the produced composites decreases. Tensile fractography is performed using SEM to consider the mechanisms for failure

    Mechanical characterization and fractography of 100 micron sized silicon carbide particles reinforced Al6061 alloy composites

    Get PDF
    In the current exploration, the impact of the 100 to 125 micron size addition of silicon carbide (SiC) on the mechanical performance of Al6061 alloy has been studied. The Al6061 alloy dispersed with 6, 9, and 12 wt.% of SiC particles were synthesized by a two-step stir cast route. Two-step addition of the preheated particles into the melt helps avoid the agglomeration of the particles, which further contributes to enhancing the properties of composites. The orchestrated composites were exposed to microstructural examines and mechanical properties evaluation. Microstructural portrayals of acquired examples were completed by SEM microscopy, EDS, and XRD patterns. The event of SiC particles were affirmed by the XRD patterns. The density of the Al6061-SiC composites was increased with the addition of high-density silicon carbide particles. The hardness, ultimate, and yield qualities of metal composites have been improved with the increase in the content of SiC support. The ductility of SiC reinforced composites decreased with hard ceramic particles' incorporation in the Al matrix alloy. Various fracture mechanisms were observed in the Al6061-SiC composites using SEM

    Synthesis, Microstructural Characterization, Mechanical, Fractographic and Wear Behavior of Micro B4C Particles Reinforced Al2618 Alloy Aerospace Composites

    Get PDF
    In the current studies an investigations were made to know the effect of 63 micron sized B4C particles addition on the mechanical and wear behavior of aerospace alloy Al2618 metal composites. Al2618 alloy with different weight percentages (2, 4, 6 and 8 wt. %) of 63 micron sized B4C particles reinforced composites were produced by stir cast process. These synthesized composites were tested for various mechanical properties like hardness, compression strength and tensile behavior along with density measurements. Further, microstructural characterization was carried by SEM/EDS and XRD analysis to know the micron sized particles distribution and phases. Wear behavior of Al2618 alloy with 2 to 8 wt. % of B4C composites were studied as per ASTM G99 standards with varying loads and sliding speeds. By adding 63 micron sized B4C particles hardness, compression and tensile strength of Al2618 alloy was enriched with slight decrease in elongation. Further, wear resistance of Al2618 alloy was enriched with the accumulation of B4C particles. As load and speed on the specimen increased, there was increase in wear of Al2618 alloy and its composites. Various tensile fracture surface morphology and worn surface behavior was observed by SEM analysis

    Poisoning and fading mechanism of grain refinement in Al-7Si alloy

    Get PDF
    The poisoning and fading mechanism of grain refinement in Al-7Si alloy has been studied in detail with the conventional (0.01%Ti or B) and higher addition levels of indigenously developed Al-3Ti, Al-5Ti, Al-3B and Al-5Ti- 1B master alloys. Results suggest that on prolonged holding the melt after the conventional addition of grain refiner to Al-7Si alloy, size of the α-Al dendrites increases (fading), which could be due to the dissolution/settling of TiAl3 and AlB2 particles. However, vigorous agitation of the melt after prolonged holding (120s min.), can partly bring back the particles into the liquid melt and acts as heterogeneous nucleating sites to some limited extents (120s min. sample). In addition, the conventional addition (0.2 wt%) of Ti-rich Al-3Ti, Al-5Ti and Al-5Ti-1B master alloy to Al-7Si alloy, the Si from the melt reacts with grain refining constituents (TiAl3) and formation of titanium silicide and coats on the surface of the TiAl3 particles and poisons the effectiveness of the nuclei. However, the higher addition level of these master alloy or B-rich Al-3B master alloys can overcome poisoning effect of Al-7Si alloy

    Investigations on mechanical and wear behavior of nano Al2O3 particulates reinforced AA7475 alloy composites

    Get PDF
    In the present investigation synthesis, microstructure, mechanical and wear behavior of 5 weight percentage of nano Al2O3 particulate reinforced AA7475 alloy composites has been reported. AA7475 matrix composite containing nano Al2O3 were fabricated by conventional stir casting method. The microstructures of the composites were examined by scanning electron microscopy. Further, mechanical and wear behavior of as cast AA7475 alloy and AA7475 - 5 wt. % nano Al2O3 composites were studied. Mechanical properties like hardness, ultimate, yield strength and percentage elongation were evaluated as per ASTM standards. Pin on disc apparatus was used to conduct the dry sliding wear tests. The experiments were conducted by varying loads and constant sliding speed of 300rpm for sliding distance of 4000m. Microstructural observation revealed the uniform distribution of particles in the AA7475 alloy matrix. From the analysis, it was found that the hardness, ultimate tensile strength and yield strength of composites were increased due to addition of nano Al2O3 particle in the AA7475 alloy matrix. Percentage elongation of the composite decreased in 5 wt. % nano Al2O3 reinforced composites. Further, the volumetric wear loss was found to increase with the load and sliding distance for all materials. Worn surface analysis made by using scanning electron micrographs to know the various mechanisms involved in the wear process

    Characterization and Tensile Fractography of Nano ZrO2 Reinforced Copper-Zinc Alloy Composites

    Get PDF
    Nano particulates fortified metal lattice composites are finding extensive variety of utilizations in car and sports hardware fabricating businesses. In the present investigation, an endeavor has been made to create copper-zinc-nano ZrO2 particulates strengthened composites by utilizing fluid liquefy technique. 4, 8 and 12 wt. % of nano ZrO2 particulates were added to the Cu-Zn base grid. Microstructural studies were finished by utilizing SEM and EDS examination. Mechanical behavior of Cu-Zn-4, 8, 12 wt. % of nano ZrO2 composites were assessed according to ASTM benchmarks. Checking electron micrographs uncovered the uniform dispersion of nano ZrO2 particulates in the copper zinc composite network. EDS examination affirmed the nearness of Zr and O components in nano ZrO2 strengthened composites. Further, it was noticed that hardness, UTS, yield quality of Cu-Zn composite expanded with the expansion of 4, 8 and 12 wt. % of nano ZrO2 particulates. Ductility of nano composites was decreased by adding zirconium oxide particulates. Fractography of tensile specimens were carried out by using SEM micrographs to understand the failure mechanisms.           &nbsp

    Influence of Combined Addition of Boron and Strontium on High-Temperature Wear Behavior of A356 Alloy

    No full text
    In the present study, the effect of the combined addition of boron (B) and strontium (Sr) on the high-temperature dry sliding wear behavior of A356 alloy has been investigated using a pin-on-disc wear testing machine attached with a furnace. During wear studies, the effect of alloy composition, normal pressure, sliding speed, and sliding distance on A356 alloy at four temperatures, namely, room temperature and 100, 200, and 300°C, have been investigated. Further, the cast alloys and worn surfaces of A356 alloy with and without B and Sr were characterized by scanning electron microscopy (SEM)/energy-dispersive spectroscopy (EDS) microanalysis. Results indicate that the combined addition of B and Sr to A356 alloy has led to improvements in wear properties. This is due to a change in microstructure, improvement in mechanical properties, and the formation of an oxide layer between the mating surfaces during the sliding wear process

    Microstructure, physical, tensile and wear behaviour of B

    No full text
    In the present study looked into how incorporating B4C particles with a size range of 20–25 microns would affect the mechanical, wear and physical properties of composites made from Al7010 alloy. The stir cast method accounted for of the total production of B4C composites. Different mechanical properties, such as hardness, tensile behaviour, wear and density, were measured and analysed for these synthetic composites. Microstructure was characterised by scanning electron microscopy and X-ray diffraction analysis to determine the distribution and phases of particles smaller than a micron. Wear tests were conducted on all the samples at varying loads and speeds. Hardness and tensile strength of Al7010 alloy were improved by adding B4C particles sized 20–25 microns, with only a minor decrease in elongation. Further, as B4C particles accumulated, the density of the Al7010 alloy decreased. SEM examination revealed a wide range of fracture behaviours upon tensile stress. Load and sliding speeds affected the wear behaviour of Al7010 alloy and its composites
    corecore