3 research outputs found
Subexponential estimations in Shirshov's height theorem (in English)
In 1993 E. I. Zelmanov asked the following question in Dniester Notebook:
"Suppose that F_{2, m} is a 2-generated associative ring with the identity
x^m=0. Is it true, that the nilpotency degree of F_{2, m} has exponential
growth?" We show that the nilpotency degree of l-generated associative algebra
with the identity x^d=0 is smaller than Psi(d,d,l), where Psi(n,d,l)=2^{18} l
(nd)^{3 log_3 (nd)+13}d^2. We give the definitive answer to E. I. Zelmanov by
this result. It is the consequence of one fact, which is based on combinatorics
of words. Let l, n and d>n be positive integers. Then all the words over
alphabet of cardinality l which length is greater than Psi(n,d,l) are either
n-divided or contain d-th power of subword, where a word W is n-divided, if it
can be represented in the following form W=W_0 W_1...W_n such that W_1 >'
W_2>'...>'W_n. The symbol >' means lexicographical order here. A. I. Shirshov
proved that the set of non n-divided words over alphabet of cardinality l has
bounded height h over the set Y consisting of all the words of degree <n.
Original Shirshov's estimation was just recursive, in 1982 double exponent was
obtained by A.G.Kolotov and in 1993 A.Ya.Belov obtained exponential estimation.
We show, that h<Phi(n,l), where Phi(n,l) = 2^{87} n^{12 log_3 n + 48} l. Our
proof uses Latyshev idea of Dilworth theorem application.Comment: 21 pages, Russian version of the article is located at the link
arXiv:1101.4909; Sbornik: Mathematics, 203:4 (2012), 534 -- 55