116 research outputs found

    Epitaxial strain effects in the spinel ferrites CoFe2O4 and NiFe2O4 from first principles

    Full text link
    The inverse spinels CoFe2O4 and NiFe2O4, which have been of particular interest over the past few years as building blocks of artificial multiferroic heterostructures and as possible spin-filter materials, are investigated by means of density functional theory calculations. We address the effect of epitaxial strain on the magneto-crystalline anisotropy and show that, in agreement with experimental observations, tensile strain favors perpendicular anisotropy, whereas compressive strain favors in-plane orientation of the magnetization. Our calculated magnetostriction constants λ100\lambda_{100} of about -220 ppm for CoFe2O4 and -45 ppm for NiFe2O4 agree well with available experimental data. We analyze the effect of different cation arrangements used to represent the inverse spinel structure and show that both LSDA+U and GGA+U allow for a good quantitative description of these materials. Our results open the way for further computational investigations of spinel ferrites

    Pressure dependence of the Verwey transition in magnetite: an infrared spectroscopic point of view

    Get PDF
    We investigated the electronic and vibrational properties of magnetite at temperatures from 300 K down to 10 K and for pressures up to 10 GPa by far-infrared reflectivity measurements. The Verwey transition is manifested by a drastic decrease of the overall reflectance and the splitting of the phonon modes as well as the activation of additional phonon modes. In the whole studied pressure range the down-shift of the overall reflectance spectrum saturates and the maximum number of phonon modes is reached at a critical temperature, which sets a lower bound for the Verwey transition temperature Tv_{\mathrm{v}}. Based on these optical results a pressure-temperature phase diagram for magnetite is proposed.Comment: 5 pages, 4 figures; accepted for publication in J. Appl. Phy

    Short-Range B-site Ordering in Inverse Spinel Ferrite NiFe2O4

    Full text link
    The Raman spectra of single crystals of NiFe2O4 were studied in various scattering configurations in close comparison with the corresponding spectra of Ni0.7Zn0.3Fe2O4 and Fe3O4. The number of experimentally observed Raman modes exceeds significantly that expected for a normal spinel structure and the polarization properties of most of the Raman lines provide evidence for a microscopic symmetry lower than that given by the Fd-3m space group. We argue that the experimental results can be explained by considering the short range 1:1 ordering of Ni2+ and Fe3+ at the B-sites of inverse spinel structure, most probably of tetragonal P4_122/P4_322 symmetry.Comment: 10 pages, 5 figures, 6 table

    High-energy photoemission on Fe3O4: Small polaron physics and the Verwey transition

    Full text link
    We have studied the electronic structure and charge ordering (Verwey) transition of magnetite (Fe3O4) by soft x-ray photoemission. Due to the enhanced probing depth and the use of different surface preparations we are able to distinguish surface and volume effects in the spectra. The pseudogap behavior of the intrinsic spectra and its temperature dependence give evidence for the existence of strongly bound small polarons consistent with both dc and optical conductivity. Together with other recent structural and theoretical results our findings support a picture in which the Verwey transition contains elements of a cooperative Jahn-Teller effect, stabilized by local Coulomb interaction

    Relaxor ferroelectricity and the freezing of short-range polar order in magnetite

    Get PDF
    A thorough investigation of single crystalline magnetite using broadband dielectric spectroscopy and other methods provides evidence for relaxor-like polar order in Fe3O4. We find long-range ferroelectric order to be im-peded by the continuous freezing of polar degrees of freedom and the formation of a tunneling-dominated glasslike state at low temperatures. This also explains the lack of clear evidence for a non-centrosymmetric crystal structure below the Verwey transition. Within the framework of recent models assuming an intimate relation of charge and polar order, the charge order, too, can be speculated to be of short-range type only and to be dominated by tunneling at low temperatures.Comment: 16 pages, 4 figures, final version with revisions according to referee demand

    Polaron physics and crossover transition in magnetite probed by pressure-dependent infrared spectroscopy

    Full text link
    The optical properties of magnetite at room temperature were studied by infrared reflectivity measurements as a function of pressure up to 8 GPa. The optical conductivity spectrum consists of a Drude term, two sharp phonon modes, a far-infrared band at around 600 cm−1^{-1}, and a pronounced mid-infrared absorption band. With increasing pressure both absorption bands shift to lower frequencies and the phonon modes harden in a linear fashion. Based on the shape of the MIR band, the temperature dependence of the dc transport data, and the occurrence of the far-infrared band in the optical conductivity spectrum the polaronic coupling strength in magnetite at room temperature should be classified as intermediate. For the lower-energy phonon mode an abrupt increase of the linear pressure coefficient occurs at around 6 GPa, which could be attributed to minor alterations of the charge distribution among the different Fe sites.Comment: 7 pages, 7 figure

    Terahertz Conductivity at the Verwey Transition in Magnetite

    Get PDF
    The complex conductivity at the (Verwey) metal-insulator transition in Fe_3O_4 has been investigated at THz and infrared frequencies. In the insulating state, both the dynamic conductivity and the dielectric constant reveal a power-law frequency dependence, the characteristic feature of hopping conduction of localized charge carriers. The hopping process is limited to low frequencies only, and a cutoff frequency nu_1 ~ 8 meV must be introduced for a self-consistent description. On heating through the Verwey transition the low-frequency dielectric constant abruptly decreases and becomes negative. Together with the conductivity spectra this indicates a formation of a narrow Drude-peak with a characteristic scattering rate of about 5 meV containing only a small fraction of the available charge carriers. The spectra can be explained assuming the transformation of the spectral weight from the hopping process to the free-carrier conductivity. These results support an interpretation of Verwey transition in magnetite as an insulator-semiconductor transition with structure-induced changes in activation energy.Comment: 6 Pages, 3 Figure

    Enhanced magnetic moment and conductive behavior in NiFe2O4 spinel ultrathin films

    Full text link
    Bulk NiFe2O4 is an insulating ferrimagnet. Here, we report on the epitaxial growth of spinel NiFe2O4 ultrathin films onto SrTiO3 single-crystals. We will show that - under appropriate growth conditions - epitaxial stabilization leads to the formation of a spinel phase with magnetic and electrical properties that radically differ from those of the bulk material : an enhanced magnetic moment (Ms) - about 250% larger - and a metallic character. A systematic study of the thickness dependence of Ms allows to conclude that its enhanced value is due to an anomalous distribution of the Fe and Ni cations among the A and B sites of the spinel structure resulting from the off-equilibrium growth conditions and to interface effects. The relevance of these findings for spinel- and, more generally, oxide-based heterostructures is discussed. We will argue that this novel material could be an alternative ferromagetic-metallic electrode in magnetic tunnel junctions.Comment: accepted for publication in Phys. Rev.

    Thermomagnetic history effects in SmMn2_2Ge2_2

    Full text link
    The intermetallic compound SmMn2_2Ge2_2, displaying multiple magnetic phase transitions, is being investigated in detail for its magnetization behavior near the 145 K first order ferromagnetic to antiferromagnetic transition occuring on cooling, in particular for thermomagnetic history effects in the magnetization data. The most unusual finding is that the thermomagnetic irreversibility, [= MFCW^{FCW}(T)-MZFC^{ZFC}(T)] at 135 K is higher in intermediate magnetic field strengths. By studying the response of the sample (i.e., thermomagnetic irreversibility and thermal hysteresis) to different histories of application of magnetic field and temperature, we demonstrate how the supercooling and superheating of the metastable magnetic phases across the first order transition at 145 K contribute to overall thermomagnetic irreversibility.Comment: 15 pages, 5 figures, to appear in Physical Review

    Ordering process and ferroelectricity in a spinel derived from FeV2O4

    Full text link
    The spinel FeV2O4 is known to exhibit peculiar physical properties, which is generally ascribed to the unusual presence of two cations showing a pronounced interplay between spin, orbital and lattice degrees of freedom (Fe2+ and V3+ on the tetrahedral and octahedral sites, respectively). The present work reports on an experimental re-investigation of this material based on a broad combination of techniques, including x-ray diffraction, energy dispersive and M\"ossbauer spectroscopies, as well as magnetization, heat capacity, dielectric and polarization measurements. Special attention was firstly paid to establish the exact cationic composition of the investigated samples, which was found to be Fe1.18V1.82O4. All the physical properties were found to point out a complex ordering process with a structural transition at TS = 138 K, followed by two successive magnetostructural transitions at TN1 = 111 K and TN2 = 56 K. This latter transition marking the appearance of electric polarization, magnetization data were analysed in details to discuss the nature of the magnetic state at T< TN2. An overall interpretation of the sequence of transitions was proposed, taking into account two spin couplings, as well as the Jahn-Teller effects and the mechanism of spin-orbit stabilization. Finally, the origin of ferroelectricity in Fe1.18V1.82O4 is discussed on the basis of recent models.Comment: 26 pages, 9 figures,59 references.Accepted by Physical Review
    • …
    corecore