162 research outputs found

    Structural modeling of NAD+ binding modes to PARP-1

    Get PDF
    The nuclear protein poly (ADP-ribose) polymerase-1 (PARP-1) plays an important role in the signaling and repair of DNA. PARP-1 catalyses covalent binding of poly (ADP-ribose) polymers with itself as well as with other acceptor proteins using NAD+ as a donor of ADP-ribose. Inhibitors of poly (ADP-ribose) polymerase have been shown to be effective in improvement of radiation therapy and chemotherapy of cancer in clinical testing. Development of new poly (ADP-ribose) polymerase-1 inhibitors based on derivatives of natural compounds such as NAD+ represents a novel and promising strategy. The structure of complex of human poly (ADP-ribose) polymerase-1 with NAD+ can be a starting point for rational design of small molecule inhibitors based on NAD+ derivatives. Indeed there is no crystal structure of complex poly (ADP-ribose) polymerase-1 with nicotinamide adenine dinucleotide (NAD+) available yet. In this work using molecular modeling approaches we have predicted NAD+ binding modes with PARP-1 at the donor binding site of the catalytic domain. Using structures of PARP-1 homologs in complex with NAD+ we predicted pharmacophore restraints of NAD+ binding to PARP-1. Based on clustering of PARP-1 conformations in complex with co-crystallized inhibitors and predicted pharmacophore restraints, we proposed several possible models of NAD+ binding to PARP-1 at the donor binding site of the catalytic domain. According to the predicted models, two conformations of pyrophosphate group of NAD+ in complex with PARP-1 at the donor binding site are possible. Validation of the proposed models of NAD+ binding with PARP-1 can be achieved by quantitative structure-activity analysis of NAD+ derivatives. We designed two NAD+ derivatives, which can be used for validation of predicted NAD+ binding models

    Computer simulation of the spatial structure of MUC 1 peptides capable of inhibiting apoptosis

    Get PDF
    Identification of new effective inhibitors of apoptosis is an important task for drug development for treatment of a number diseases including neurogenerative diseases. Initiation of apoptosis occurs via the formationof macromolecular protein complexes. In these complexes, activation of key enzymes in apoptosis, caspases, takes place. One of those macromolecular complexes is DISC (death- inducing signaling complex) playing a central role in the induction of the extrinsic apoptosis pathway. The adaptor protein FA DD has a major role in the formation of the DISC. Therefore, inhibitors of FA DD, preventing its function in the DISC, can act as potential drugs inhibiting apoptosis. Furthermore, the study of the mechanisms of action of these inhibitors is of great interest for understanding the mechanisms of the signal transduction pathways of apoptosis. It has been reported that a natural protein inhibitor of FA DD is mucin-type 1 glycoprotein (MUC1). In particular, two fragments of the primary structure of the cytoplasmic domain of MUC1 (MUC1- CD) are capable of inhibiting the binding of caspase-8 to FA DD. However, the three-dimensional structure of MUC1 has not been obtained yet. It complicates significantly the rational design of potential drugs on the basis of these peptides. In this context, the aim of the present study was in silico prediction ofthree-dimensional structures of MUC1-CD peptides corresponding to protein fragments (1-20 and 46-72), as well as analysis of their conformational properties. The main focus of the work was given to the peptide MUC1-CD (46-72), which is capable of binding to FA DD. Using the methods of molecular dynamics in the implicit water it was shown that the peptide MUC1-CD (46-72) can take conformations similar to the conformations of a number of fragments of the caspase-8 DED domain. It was found that  the structure of the peptide MUC1-CD (46-72) is similar to the spatial structure of at least four fragments of caspase-8. These results indicate that the molecular mechanism of the inhibitory activity of the peptide can be explained by competitive binding with FA DD due to the structural and conformational similarity with the fragments of the caspase-8 DED domain

    Prioritization of biological processes based on the reconstruction and analysis of associative gene networks describing the response of plants to adverse environmental factors

    Get PDF
    Methods for prioritizing or ranking candidate genes according to their importance based on specific criteria via the analysis of gene networks are widely used in biomedicine to search for genes associated with diseases and to predict biomarkers, pharmacological targets and other clinically relevant molecules. These methods have also been used in other fields, particularly in crop production. This is largely due to the development of technologies to solve problems in marker-oriented and genomic selection, which requires knowledge of the molecular genetic mechanisms underlying the formation of agriculturally valuable traits. A new direction for the study of molecular genetic mechanisms is the prioritization of biological processes based on the analysis of associative gene networks. Associative gene networks are heterogeneous networks whose vertices can depict both molecular genetic objects (genes, proteins, me tabolites, etc.) and the higher-level factors (biological processes, diseases, external environmental factors, etc.) related to regulatory, physicochemical or associative interactions. Using a previously developed method, biological processes involved in plant responses to increased cadmium content, saline stress and drought conditions were prioritized according to their degree of connection with the gene networks in the SOLANUM TUBEROSUM knowledge base. The prioritization results indicate that fundamental processes, such as gene expression, post-translational modifications, protein degradation, programmed cell death, photosynthesis, signal transmission and stress response play important roles in the common molecular genetic mechanisms for plant response to various adverse factors. On the other hand, a group of processes related to the development of seeds (“seeding development”) was revealed to be drought specific, while processes associated with ion transport (“ion transport”) were included in the list of responses specific to salt stress and processes associated with the metabolism of lipids were found to be involved specifically in the response to cadmium

    Design and experimental validation of the action of small molecule-based inhibitors of the FADD protein

    Get PDF
    CD95 is one of the best studied members of the death receptor family. Activation of CD95 leads to the induction of the cell death programme, apoptosis, via formation of the death-inducing signaling complex (DISC). FA DD is a key adaptor protein for the formation of the C D95 DISC and activation of caspase-8 in the receptor complex. FA DD comprises the death domain and the death effector domain (DED). The death domain is essential for the interactions of FA DD with CD95, while DED is necessary for the recruitment of procaspase-8, -10 and the protein c-FLIP into the DISC. The search for the inhibitors that would block the interactions of FA DD with the other core proteins of the DISC is essential for the studies of the structure and function of this complex, investigation of the apoptosis mechanisms and development of new treatments for neurodegenerative diseases. In the course of this work, the screening for small inhibitors in silico that selectively interact with DED has been performed. For this purpose, the molecular modeling of the protein complexes and virtual screening of the potential inhibitors of FA DD has been performed. In addition, a new technology to test the activity of these inhibitors has been developed. The computational and experimental analysis performed allowed us to characterize the optimal conformation of the FA DD protein for the design of the small molecules that can bind in the region of amino acid residue Y25. We presume that further optimization of the structures of chemical compounds that can bind with the hydrophobic pocket next to the residue Y25 of FA DD will allow for the creation of the new perspective inhibitors of the programmed cell death

    Prioritization of potato genes involved in the formation of agronomically valuable traits using the SOLANUM TUBEROSUM knowledge base

    Get PDF
    The development of highly efficient technologies in genomics, transcriptomics, proteomics and metabolomics, as well as new technologies in agriculture has led to an “information explosion” in plant biology and crop production, including potato production. Only a small part of the information reaches formalized databases (for example, Uniprot, NCBI Gene, BioGRID, IntAct, etc.). One of the main sources of reliable biological data is the scientific literature. The well-known PubMed database contains more than 18 thousand abstracts of articles on potato. The effective use of knowledge presented in such a number of non-formalized documents in natural language requires the use of modern intellectual methods of analysis. However, in the literature, there is no evidence of a widespread use of intelligent methods for automatically extracting knowledge from scientific publications on cultures such as potatoes. Earlier we developed the SOLANUM TUBEROSUM knowledge base (http://www-bionet.sysbio.cytogen. ru/and/plant/). Integrated into the knowledge base information about the molecular genetic mechanisms underlying the selection of significant traits helps to accelerate the identification of candidate genes for the breeding characteristics of potatoes and the development of diagnostic markers for breeding. The article searches for new potential participants of the molecular genetic mechanisms of resistance to adverse factors in plants. Prioritizing candidate genes has shown that the PHYA, GF14, CNIH1, RCI1A, ABI5, CPK1, RGS1, NHL3, GRF8, and CYP21-4 genes are the most promising for further testing of their relationships with resistance to adverse factors. As a result of the analysis, it was shown that the molecular genetic relationships responsible for the formation of significant agricultural traits are complex and include many direct and indirect interactions. The construction of associative gene networks and their analysis using the SOLANUM TUBEROSUM knowledge base is the basis for searching for target genes for targeted mutagenesis and marker-oriented selection of potato varieties with valuable agricultural characteristics

    Replication-transcription complex of coronaviruses: functions of individual viral non-structural subunits, properties and architecture of their complexes

    Get PDF
    Coronaviruses (CoVs) belong to the subfamily Orthocoronavirinae of the family Coronaviridae. CoVs are enveloped (+) RNA viruses with unusually long genomes. Severe acute respiratory syndrome CoV (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV), and the novel coronavirus (2019-nCoV, SARS-CoV-2) have been identif ied as causing global pandemics. Clinically tested vaccines are widely used to control rapidly spreading, acute, and often severe infections; however, effective drugs are still not available. The genomes of SARS-CoV-2 and SARS-CoV are approximately 80 % identical, while the genomes of SARS-CoV-2 and MERS-CoV are approximately 50 % identical. This indicates that there may be common mechanisms of coronavirus pathogenesis and, therefore, potential therapeutic targets for each virus may be the same. The enzymes and effector proteins that make up the replicationtranscription complex (RTC) of coronaviruses are encoded by a large replicase gene. These enzymes and effector proteins represent promising targets for potential therapeutic drugs. The enzyme targets include papain- and 3C-like cysteine proteinases that process two large viral polyproteins, RNA-dependent RNA polymerase, RNA helicase, viral genome-modifying enzymes, and enzymes with 3’–5’ exoribonuclease or uridylate-specif ic endonuclease activity. Currently, there are many studies investigating the complex molecular mechanisms involved in the assembly and function of the RTC. This review will encompass current, modern studies on the properties and complexes of individual non-structural subunits of the RTC, the structures of individual coronavirus RTC subunits, domain organization and functions of subunits, protein-protein interactions, properties and architectures of subunit complexes, the effect of mutations, and the identif ication of mutations affecting the viability of the virus in cell culture

    Computer analysis of regulation of hepatocarcinoma marker genes hypermethylated by HCV proteins

    Get PDF
    Hepatitis C virus (HCV) is a risk factor that leads to hepatocellular carcinoma (HCC) development. Epigenetic changes are known to play an important role in the molecular genetic mechanisms of virus-induced oncogenesis. Aber rant DNA methylation is a mediator of epigenetic changes that are closely associated with the HCC pathogenesis and considered a biomarker for its early diagnosis. The ANDSystem software package was used to reconstruct and evaluate the statistical significance of the pathways HCV could potentially use to regulate 32 hypermethylated genes in HCC, including both oncosuppressor and protumorigenic ones identified by genome-wide analysis of DNA methylation. The reconstructed pathways included those affecting protein-protein interactions (PPI), gene expression, protein activity, stability, and transport regulations, the expression regulation pathways being statistically significant. It has been shown that 8 out of 10 HCV proteins were involved in these pathways, the HCV NS3 protein being implicated in the largest number of regulatory pathways. NS3 was associated with the regulation of 5 tumor-suppressor genes, which may be the evidence of its central role in HCC pathogenesis. Analysis of the reconstructed pathways has demonstrated that following the transcription factor inhibition caused by binding to viral proteins, the expression of a number of oncosuppressors (WT1, MGMT, SOCS1, P53) was suppressed, while the expression of others (RASF1, RUNX3, WIF1, DAPK1) was activated. Thus, the performed gene-network reconstruction has shown that HCV proteins can influence not only the methylation status of oncosuppressor genes, but also their transcriptional regulation. The results obtained can be used in the search for pharmacological targets to develop new drugs against HCV-induced HCC

    Molecular-genetic mechanisms of the interaction between processes of cell response to mechanical stress and neuronal apoptosis in primary open-angle glaucoma

    Get PDF
    Glaucoma is a chronic and progressive disease, which affects more than 60 million people worldwide. Primary open-angle glaucoma (POAG) is one of the most common forms of glaucoma. For example, about 2.71 million people in the USA had primary open-angle glaucoma in 2011. Currently POAG is a major cause of irreversible vision loss. In patients with treated open-angle glaucoma the risk of blindness reached to be about 27 %. It is known that the death of optic nerve cells can be triggered by mechanical stress caused by increased intraocular pressure, which induces neuronal apoptosis and is observed in patients with POAG. Currently, there is a large number of scientific publications describing proteins and genes involved in the pathogenesis of POAG, including neuronal apoptosis and the cell response to mechanical stress. However, the molecular- genetic mechanisms underlying the pathophysiology of POAG are still poorly understood. Reconstruction of associative networks describing the functional interactions between these genes/proteins, including biochemical reactions, regulatory interactions, transport, etc., requires the use of methods of automated knowledge extraction from texts of scientific publications. The aim of the work was the analysis of associative networks, describing the molecular-genetic interactions between proteins and genes involved in cell response to mechanical stress (CRMS), neuronal apoptosis and pathogenesis of POAG using ANDSystem, our previous development for automated text analysis. It was shown that genes associated with POAG are statistically significantly more often represented among the genes involved in the interactions between CRMS and neuronal apoptosis than it was expected by random reasons, which can be an explanation for the effect of POAG leading to the retinal ganglion cell death

    Mechanosensitive molecular interactions in atherogenic regions of the arteries: development of atherosclerosis

    Get PDF
    A terrible disease of the cardiovascular system, atherosclerosis, develops in the areas of bends and branches of arteries, where the direction and modulus of the blood flow velocity vector change, and consequently so does the mechanical effect on endothelial cells in contact with the blood flow. The review focuses on topical research studies on the development of atherosclerosis – mechanobiochemical events that transform the proatherogenic mechanical stimulus of blood flow – low and low/oscillatory arterial wall shear stress in the chains of biochemical reactions in endothelial cells, leading to the expression of specific proteins that cause the progression of the pathological process. The stages of atherogenesis, systemic risk factors for atherogenesis and its important hemodynamic factor, low and low/oscillatory wall shear stress exerted by blood flow on the endothelial cells lining the arterial walls, have been described. The interactions of cell adhesion molecules responsible for the development of atherosclerosis under low and low/oscillating shear stress conditions have been demonstrated. The activation of the regulator of the expression of cell adhesion molecules, the transcription factor NF­κB, and the factors regulating its activation under these conditions have been described. Mechanosensitive signaling pathways leading to the expression of NF­κB in endothelial cells have been described. Studies of the mechanobiochemical signaling pathways and interactions involved in the progression of atherosclerosis provide valuable information for the development of approaches that delay or block the development of this disease
    corecore