268 research outputs found
ΠΠ»ΠΈΡΠ½ΠΈΠ΅ Π³Π°ΡΠ½ΠΈΡ Π½Π° Π»ΠΈΡΡΡ ΠΌΠΈΠΊΡΠΎΡΡΡΡΠΊΡΡΡΡ Π² ΡΠΏΠ»Π°Π²Π΅ 1570
The issue is devoted to the study of the influence of hafnium on the structure and properties of alloy 1570. Ingots from alloy 1570 were cast into the steel coquille, including those with additives of hafnium 0.1, 0.2 and 0.5 %. To determine the size of the grain structure in the obtained ingots, an Axionovert-40 MAT optical microscope was used, chemical analysis of intermetallic particles was carried out using JEOL 6390A SEM. In addition, for the alloy 1570 and 1570β0.5Hf, the presence of nanoparticles with the L12 structure was studied using transmission electron microscope JEM-2100. Studies showed that hafnium additives make it possible to achieve a significant modification of the cast structure. For example, when introducing hafnium into the initial alloy in an amount of 0.5 % of the total weight, it was possible to achieve a reduction in the average grain size by 2 times. Scanning microscopy data showed that hafnium partially dissolves in particles containing scandium and zirconium as well. The addition of hafnium increases the number of large particles formed during crystallization. Transmission microscopy showed the presence of coherent aluminum matrix nanoparticles in alloy 1570 and having a superstructure of L12, which were most likely formed during intermittent decay during ingot cooling. When 0.5 % Hf was added, no nanoparticles with the L12 superstructure were detected. To explain the latter fact, it is necessary to study the surface of the liquidus of the AlβHfβSc system, as well as to study the effect of hafnium on the diffusion coefficient of scandium in aluminum.ΠΠ·ΡΡΠ΅Π½ΠΎ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π³Π°ΡΠ½ΠΈΡ Π½Π° ΡΡΡΡΠΊΡΡΡΡ ΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΠΏΠ»Π°Π²Π° 1570. Π ΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΊΠΎΠΊΠΈΠ»Ρ Π±ΡΠ»ΠΈ ΠΎΡΠ»ΠΈΡΡ ΡΠ»ΠΈΡΠΊΠΈ ΠΈΠ· ΡΠΏΠ»Π°Π²Π° 1570, Π² ΡΠΎΠΌ ΡΠΈΡΠ»Π΅ Ρ Π΄ΠΎΠ±Π°Π²ΠΊΠ°ΠΌΠΈ Π³Π°ΡΠ½ΠΈΡ (0,1, 0,2 ΠΈ 0,5 %). ΠΠ»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠ°Π·ΠΌΠ΅ΡΠΎΠ² Π·Π΅ΡΠ΅Π½Π½ΠΎΠΉ ΡΡΡΡΠΊΡΡΡΡ Π² ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΡΠ»ΠΈΡΠΊΠ°Ρ
ΠΏΡΠΈΠΌΠ΅Π½ΡΠ»ΡΡ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏ Β«Axionovert-40 MATΒ», Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΈΠ½ΡΠ΅ΡΠΌΠ΅ΡΠ°Π»Π»ΠΈΠ΄Π½ΡΡ
ΡΠ°ΡΡΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΊΠ°Π½ΠΈΡΡΡΡΠ΅Π³ΠΎ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠ° JEOL 6390A. ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, Π΄Π»Ρ ΡΠΏΠ»Π°Π²ΠΎΠ² 1570 ΠΈ 1570β0,5Hf Π½Π° ΠΏΡΠΎΡΠ²Π΅ΡΠΈΠ²Π°ΡΡΠ΅ΠΌ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠΌ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠ΅ JEM-2100 ΠΈΠ·ΡΡΠ°Π»ΠΎΡΡ Π½Π°Π»ΠΈΡΠΈΠ΅ Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡ, ΠΈΠΌΠ΅ΡΡΠΈΡ
ΡΡΡΡΠΊΡΡΡΡ L12. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, ΡΡΠΎ Π΄ΠΎΠ±Π°Π²ΠΊΠΈ Π³Π°ΡΠ½ΠΈΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ Π΄ΠΎΠ±ΠΈΡΡΡΡ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ Π»ΠΈΡΠΎΠΉ ΡΡΡΡΠΊΡΡΡΡ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΏΡΠΈ Π²Π²Π΅Π΄Π΅Π½ΠΈΠΈ Π² ΠΈΡΡ
ΠΎΠ΄Π½ΡΠΉ ΡΠΏΠ»Π°Π² 0,5 % Hf (ΠΎΡ ΠΎΠ±ΡΠ΅ΠΉ ΠΌΠ°ΡΡΡ) Π΄ΠΎΡΡΠΈΠ³Π½ΡΡΠΎ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠ΅ ΡΡΠ΅Π΄Π½Π΅Π³ΠΎ ΡΠ°Π·ΠΌΠ΅ΡΠ° Π·Π΅ΡΠ½Π° Π² 2 ΡΠ°Π·Π°. Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ Π΄Π°Π½Π½ΡΠΌ ΡΠΊΠ°Π½ΠΈΡΡΡΡΠ΅ΠΉ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΠΈ, Π³Π°ΡΠ½ΠΈΠΉ ΡΠ°ΡΡΠΈΡΠ½ΠΎ ΡΠ°ΡΡΠ²ΠΎΡΡΠ΅ΡΡΡ Π² ΡΠ°ΡΡΠΈΡΠ°Ρ
, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ
ΡΠ°ΠΊΠΆΠ΅ ΡΠΊΠ°Π½Π΄ΠΈΠΉ ΠΈ ΡΠΈΡΠΊΠΎΠ½ΠΈΠΉ. ΠΠΎΠ±Π°Π²ΠΊΠ° Π³Π°ΡΠ½ΠΈΡ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π΅Ρ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΊΡΡΠΏΠ½ΡΡ
ΡΠ°ΡΡΠΈΡ, ΠΎΠ±ΡΠ°Π·ΡΡΡΠΈΡ
ΡΡ ΠΏΡΠΈ ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΠ·Π°ΡΠΈΠΈ. ΠΡΠΎΡΠ²Π΅ΡΠΈΠ²Π°ΡΡΠ°Ρ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°Π»Π° Π½Π°Π»ΠΈΡΠΈΠ΅ Π² ΡΠΏΠ»Π°Π²Π΅ 1570 Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡ, ΠΊΠΎΠ³Π΅ΡΠ΅Π½ΡΠ½ΡΡ
Π°Π»ΡΠΌΠΈΠ½ΠΈΠ΅Π²ΠΎΠΉ ΠΌΠ°ΡΡΠΈΡΠ΅ ΠΈ ΠΈΠΌΠ΅ΡΡΠΈΡ
ΡΠ²Π΅ΡΡ
ΡΡΡΡΠΊΡΡΡΡ L12, ΠΊΠΎΡΠΎΡΡΠ΅ Ρ Π±ΠΎΠ»ΡΡΠΎΠΉ Π΄ΠΎΠ»Π΅ΠΉ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΠΈ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π»ΠΈΡΡ Π² Ρ
ΠΎΠ΄Π΅ ΠΏΡΠ΅ΡΡΠ²ΠΈΡΡΠΎΠ³ΠΎ ΡΠ°ΡΠΏΠ°Π΄Π° ΠΏΡΠΈ ΠΎΡΡΡΠ²Π°Π½ΠΈΠΈ ΡΠ»ΠΈΡΠΊΠΎΠ². ΠΡΠΈ Π΄ΠΎΠ±Π°Π²ΠΊΠ΅ 0,5 % Hf Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡ, ΠΈΠΌΠ΅ΡΡΠΈΡ
ΡΠ²Π΅ΡΡ
ΡΡΡΡΠΊΡΡΡΡ L12, Π½Π΅ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΎ. ΠΠ»Ρ ΠΎΠ±ΡΡΡΠ½Π΅Π½ΠΈΡ ΡΡΠΎΠ³ΠΎ ΡΠ°ΠΊΡΠ° Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ Π»ΠΈΠΊΠ²ΠΈΠ΄ΡΡΠ° ΡΠΈΡΡΠ΅ΠΌΡ AlβHfβSc, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ Π²Π»ΠΈΡΠ½ΠΈΡ Π³Π°ΡΠ½ΠΈΡ Π½Π° ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π΄ΠΈΡΡΡΠ·ΠΈΠΈ ΡΠΊΠ°Π½Π΄ΠΈΡ Π² Π°Π»ΡΠΌΠΈΠ½ΠΈΠΈ
Large magnetic anisotropy in Ferrihydrite nanoparticles synthesized from reverse micelles
Six-line ferrihydrite(FH) nanoparticles have been synthesized in the core of
reverse micelles, used as nanoreactors to obtain average particle sizes
2 to 4 nm. The blocking temperatures extracted from
magnetization data increased from to 20 K for increasing particle
size. Low-temperature \MOS measurements allowed to observe the onset of
differentiated contributions from particle core and surface as the particle
size increases. The magnetic properties measured in the liquid state of the
original emulsion showed that the \FH phase is not present in the liquid
precursor, but precipitates in the micelle cores after the free water is
freeze-dried. Systematic susceptibility \chi_{ac}(\emph{f},T) measurements
showed the dependence of the effective magnetic anisotropy energies
with particle volume, and yielded an effective anisotropy value of kJ/m.Comment: 8 pages, 10 figures. Nanotechnology, v17 (Nov. 2006) In pres
- β¦