4,490 research outputs found
Reflection groups in hyperbolic spaces and the denominator formula for Lorentzian Kac--Moody Lie algebras
This is a continuation of our "Lecture on Kac--Moody Lie algebras of the
arithmetic type" \cite{25}.
We consider hyperbolic (i.e. signature ) integral symmetric bilinear
form (i.e. hyperbolic lattice), reflection group
, fundamental polyhedron \Cal M of and an acceptable
(corresponding to twisting coefficients) set P({\Cal M})\subset M of vectors
orthogonal to faces of \Cal M (simple roots). One can construct the
corresponding Lorentzian Kac--Moody Lie algebra {\goth g}={\goth
g}^{\prime\prime}(A(S,W,P({\Cal M}))) which is graded by .
We show that \goth g has good behavior of imaginary roots, its denominator
formula is defined in a natural domain and has good automorphic properties if
and only if \goth g has so called {\it restricted arithmetic type}. We show
that every finitely generated (i.e. P({\Cal M}) is finite) algebra {\goth
g}^{\prime\prime}(A(S,W_1,P({\Cal M}_1))) may be embedded to {\goth
g}^{\prime\prime}(A(S,W,P({\Cal M}))) of the restricted arithmetic type. Thus,
Lorentzian Kac--Moody Lie algebras of the restricted arithmetic type is a
natural class to study.
Lorentzian Kac--Moody Lie algebras of the restricted arithmetic type have the
best automorphic properties for the denominator function if they have {\it a
lattice Weyl vector }. Lorentzian Kac--Moody Lie algebras of the
restricted arithmetic type with generalized lattice Weyl vector are
called {\it elliptic}Comment: Some corrections in Sects. 2.1, 2.2 were done. They don't reflect on
results and ideas. 31 pages, no figures. AMSTe
Elliptic fibrations on K3 surfaces
This is mainly a review of my results related to the title. We discuss, how
many elliptic fibrations and elliptic fibrations with infinite automorphism
group (or the Mordell-Weil group) an algebraic K3 surface over an algebraically
closed field can have.
This was the subject of my talk at Oberwolfach Workshop "Higher dimensional
elliptic fibrations" in October 2010.Comment: Var2: 19 pages. We added a description of K3 surfaces with finite
number of non-singular rational curves, finite number of Enriques
involutions, and with naturally arithmetic automorphism groups. Var3: The
exposition polished. Var4: An important theorem is added at the en
- …
