21 research outputs found

    ΠŸΠ΅Ρ€Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½Ρ‹ΠΉ комплСкс для восстановлСния ΠΈ поддСрТания ТизнСспособности донорской ΠΏΠ΅Ρ‡Π΅Π½ΠΈ ex vivo: ΠΏΠ΅Ρ€Π²ΠΎΠ΅ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ΅ исслСдованиС

    Get PDF
    Introduction. Successful liver transplantation including from donors with a sudden irreversible cardiac arrestΒ requires the use of modern hardware and technical support to maintain, select and sustain organ viability for theΒ period from harvesting to transplantation to the recipient.Materials and methods. Hardware-software systemΒ (HSS) developed by the Russian State Scientific Center for Robotics and Technical Cybernetics (RTC) was usedΒ for testing of normothermic perfusion of donor’s liver ex vivo. The experiment was conducted on the isolatedΒ pig liver (Duroc breed) in accordance with the ethical principles.Result. During perfusion spontaneous recoveryΒ of bile outflow through the cannula installed in the common bile duct (volume of bile released – 240 ml) wasΒ observed, and the color and uniformity of the perfused liver did not differ from the normal parameters. BiochemicalΒ indicators were stabilized at the physiological values after 40 minutes of perfusion procedure.Conclusion.Β Isolated liver transplant was completely restored after 30 minutes of warm ischemia and was functioning wellΒ due to ex vivo perfusion procedure on the new perfusion device. The first case of the new device usage for normothermicΒ liver ex vivo demonstrated hopeful results to be further investigated.Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. Π‘ΠΎΠΊΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ числа посмСртных Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² со стандартными характСристиками ΠΎΡ€Π³Π°Π½ΠΎΠ² являСтся главной ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠΎΠΉ трансплантологии. Π Π°Π·Π²ΠΈΡ‚ΠΈΡŽ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌ пСрСсадки ΠΏΠ΅Ρ‡Π΅Π½ΠΈ ΠΎΡ‚Π²Π΅Ρ‡Π°Π΅Ρ‚ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΏΠ΅Ρ€Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎΒ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π½ΠΎ-тСхничСского обСспСчСния, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π΅Π³ΠΎ Π²ΠΎΡΡΡ‚Π°Π½Π°Π²Π»ΠΈΠ²Π°Ρ‚ΡŒ, ΠΏΡ€ΠΎΠ²Π΅Ρ€ΡΡ‚ΡŒ, ΡΠΎΡ…Ρ€Π°Π½ΡΡ‚ΡŒ ΠΈΒ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°Ρ‚ΡŒ ΠΆΠΈΠ·Π½Π΅ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ ΠΎΡ€Π³Π°Π½Π° ex vivo. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ приводятся Π΄Π°Π½Π½Ρ‹Π΅ ΠΎ ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎΠΌ ΠΎΡ‚Π΅Ρ‡Π΅ΡΡ‚Π²Π΅Π½Π½ΠΎΠΌΒ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΌ ΠΎΠΏΡ‹Ρ‚Π΅ ΠΏΠ΅Ρ€Ρ„ΡƒΠ·ΠΈΠΈ донорской ΠΏΠ΅Ρ‡Π΅Π½ΠΈ Π½Π° Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠΌ ΠΏΠ΅Ρ€Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½ΠΎΠΌ комплСксС.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Для Π°ΠΏΡ€ΠΎΠ±Π°Ρ†ΠΈΠΈ нормотСрмичСской ΠΏΠ΅Ρ€Ρ„ΡƒΠ·ΠΈΠΈ донорской ΠΏΠ΅Ρ‡Π΅Π½ΠΈ Π² цСлях восстановлСния и сохранСния ТизнСспособности ΠΎΡ€Π³Π°Π½Π° послС 30-ΠΌΠΈΠ½ΡƒΡ‚Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π° асистолии Π±Ρ‹Π» ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Β Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΉ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΎΠ±Ρ€Π°Π·Π΅Ρ† Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π½ΠΎ-ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠ³ΠΎ комплСкса (АПК). Аппарат для пСрфузии донорской ΠΏΠ΅Ρ‡Π΅Π½ΠΈ ex vivo Π±Ρ‹Π» Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ Π² ЀГАНУ Β«Π¦Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π½Π°ΡƒΡ‡Π½ΠΎ-ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΡΠΊΠΈΠΉΒ ΠΈ ΠΎΠΏΡ‹Ρ‚Π½ΠΎ-конструкторский институт Ρ€ΠΎΠ±ΠΎΡ‚ΠΎΡ‚Π΅Ρ…Π½ΠΈΠΊΠΈ ΠΈ тСхничСской ΠΊΠΈΠ±Π΅Ρ€Π½Π΅Ρ‚ΠΈΠΊΠΈΒ» (ЦНИИ РВК) ΠΏΡ€ΠΈ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠ΅Β ΠœΠΈΠ½ΠΈΡΡ‚Π΅Ρ€ΡΡ‚Π²Π° образования ΠΈ Π½Π°ΡƒΠΊΠΈ Π Π€. ЭкспСримСнт Π±Ρ‹Π» ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π½Π° ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΏΠ΅Ρ‡Π΅Π½ΠΈΒ ΡΠ²ΠΈΠ½ΡŒΠΈ Π² соотвСтствии с ΠΌΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½Ρ‹ΠΌΠΈ этичСскими трСбованиями ΠΊ исслСдованиям Π½Π° ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ….Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚. Π’ процСссС ΠΏΠ΅Ρ€Ρ„ΡƒΠ·ΠΈΠΈ наблюдалось спонтанноС восстановлСниС ΠΎΡ‚Ρ‚ΠΎΠΊΠ° ΠΆΠ΅Π»Ρ‡ΠΈ Ρ‡Π΅Ρ€Π΅Π· канюлю,Β ΡƒΡΡ‚Π°Π½ΠΎΠ²Π»Π΅Π½Π½ΡƒΡŽ Π² ΠΎΠ±Ρ‰ΠΈΠΉ ΠΆΠ΅Π»Ρ‡Π½Ρ‹ΠΉ ΠΏΡ€ΠΎΡ‚ΠΎΠΊ (объСм отдСляСмой ΠΆΠ΅Π»Ρ‡ΠΈ – 240 ΠΌΠ»), Ρ†Π²Π΅Ρ‚ ΠΈ ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΡΡ‚ΡŒΒ ΠΏΠ΅Ρ€Ρ„ΡƒΠ·ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ ΠΏΠ΅Ρ‡Π΅Π½ΠΈ Π½Π΅ ΠΎΡ‚Π»ΠΈΡ‡Π°Π»ΠΈΡΡŒ ΠΎΡ‚ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ². БиохимичСскиС ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ ΡΡ‚Π°Π±ΠΈΠ»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π»ΠΈΡΡŒΒ Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ физиологичСских Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ‡Π΅Ρ€Π΅Π· 40 ΠΌΠΈΠ½ΡƒΡ‚ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΠ³ΠΎ сСанса нормотСрмичСской аппаратной ΠΏΠ΅Ρ€Ρ„ΡƒΠ·ΠΈΠΈ.Π’Ρ‹Π²ΠΎΠ΄. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΉ Π°ΠΏΡ€ΠΎΠ±Π°Ρ†ΠΈΠΈ АПК Π½Π° свиной ΠΏΠ΅Ρ‡Π΅Π½ΠΈ продСмонстрировано,Β Ρ‡Ρ‚ΠΎ Π½ΠΎΠ²ΠΎΠ΅ устройство позволяСт ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ Π½ΠΎΡ€ΠΌΠΎΡ‚Π΅Ρ€ΠΌΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΏΠ΅Ρ€Ρ„ΡƒΠ·ΠΈΡŽ ΠΈ Ρ‚Π΅ΠΌ ΡΠ°ΠΌΡ‹ΠΌΒ Π²ΠΎΡΡΡ‚Π°Π½Π°Π²Π»ΠΈΠ²Π°Ρ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ΠΏΠ΅Ρ‡Π΅Π½ΠΈ послС 30-ΠΌΠΈΠ½ΡƒΡ‚Π½ΠΎΠΉ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ ишСмии. ΠŸΠ΅Ρ€Π²ΠΎΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π°Β ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ ΠΎΠ±Π½Π°Π΄Π΅ΠΆΠΈΠ²Π°ΡŽΡ‰ΠΈΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚. Π’Ρ€Π΅Π±ΡƒΡŽΡ‚ΡΡ дальнСйшиС исслСдования для внСдрСния Π² ΠΊΠ»ΠΈΠ½ΠΈΡ‡Π΅ΡΠΊΡƒΡŽΒ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΡƒ трансплантологии ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ восстановлСния ΠΈ сохранСния ТизнСспособности трансплантатов ex vivo

    Disinfection of Surfaces Contaminated with SARS-CoV-2 Coronavirus by UV Radiation of Low-Pressure Mercury-Vapour Lamp

    Get PDF
    The aim of the work was to determine the effective ultraviolet (UV) doses required for the disinfection of surfaces contaminated with the SARS-CoV-2 coronavirus using a low-pressure mercury lamp. Materials and methods. To carry out prompt disinfection of surfaces, a specially designed source of UV radiation with a power of 7.5 W at a wavelength of 254 nm in the form of a portable flashlight was employed, which has a high efficiency of UV radiation output and the possibility of long-term autonomous operation from a compact battery. In the studies, a suspension culture of the SARS-CoV-2 coronavirus with biological activity of 5.3βˆ™106 PFU/ml was used. The objects of testing were plastic Petri dishes (disposable) and office paper (grade C, density 80 g/m2 ). Results and discussion. Doses of UV radiation that provide disinfection of surfaces contaminated with the COVID-19 pathogen with an efficiency of 99.0 % (paper) to 99.95 % (plastic) have been determined. The results obtained make it possible to recommend a portable UV irradiator for use in the practice of preventive measures to combat the spread of the disease caused by the SARS-CoV-2 coronavirus

    Laserforschung. Erarbeitung physikalischer Grundlagen und technischer Konzepte zur On-line Kontrolle und Qualitaetsregelung fuer das Laserschweissen Abschlussbericht

    No full text
    In relationship with the University of St. Petersburg, established as an international co-operation, the scientific and technological basis for a laser welding quality insurance system was worked out. Foundation for this investigation are theoretical models of the static and dynamic behaviour of the melting zone and the keyhole. The reaction of the plasma plume was studied with respect to the influence of the keyhole. The scientific findings created the basis for the on-line process inspection. As part of the investigation, first experience also in the practical implementation of the results were achieved. A prototype, based on the scientific findings, was built up. The innovation of this system is based on multi-sensor technology, in order to detect fast process fluctuations. Especially by measuring the dependencies of angle and dimension of the plasma plume, the variation of the penetration depth was discovered. (orig.)Summary in GermanAvailable from TIB Hannover: F00B297+a / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEBundesministerium fuer Bildung und Forschung (BMBF), Bonn (Germany)DEGerman

    State and parameters of the material in the zone of interaction of the beam in deep penetration laser welding

    No full text
    30.00; Translated from Russian (Fiz. Khim. Obrab. Mater. 1989 v. 23(2) p. 104-115)Available from British Library Document Supply Centre- DSC:9023.19(VR-Trans--4509)T / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    Computer system of electron beam and laser welding modelling

    No full text

    Computer system of electron beam and laser welding modelling

    No full text
    corecore