21 research outputs found
ΠΠ΅ΡΡΡΠ·ΠΈΠΎΠ½Π½ΡΠΉ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡ Π΄Π»Ρ Π²ΠΎΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΡ ΠΈ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΆΠΈΠ·Π½Π΅ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ Π΄ΠΎΠ½ΠΎΡΡΠΊΠΎΠΉ ΠΏΠ΅ΡΠ΅Π½ΠΈ ex vivo: ΠΏΠ΅ΡΠ²ΠΎΠ΅ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅
Introduction. Successful liver transplantation including from donors with a sudden irreversible cardiac arrestΒ requires the use of modern hardware and technical support to maintain, select and sustain organ viability for theΒ period from harvesting to transplantation to the recipient.Materials and methods. Hardware-software systemΒ (HSS) developed by the Russian State Scientific Center for Robotics and Technical Cybernetics (RTC) was usedΒ for testing of normothermic perfusion of donorβs liver ex vivo. The experiment was conducted on the isolatedΒ pig liver (Duroc breed) in accordance with the ethical principles.Result. During perfusion spontaneous recoveryΒ of bile outflow through the cannula installed in the common bile duct (volume of bile released β 240 ml) wasΒ observed, and the color and uniformity of the perfused liver did not differ from the normal parameters. BiochemicalΒ indicators were stabilized at the physiological values after 40 minutes of perfusion procedure.Conclusion.Β Isolated liver transplant was completely restored after 30 minutes of warm ischemia and was functioning wellΒ due to ex vivo perfusion procedure on the new perfusion device. The first case of the new device usage for normothermicΒ liver ex vivo demonstrated hopeful results to be further investigated.ΠΠ²Π΅Π΄Π΅Π½ΠΈΠ΅. Π‘ΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΠ΅ ΡΠΈΡΠ»Π° ΠΏΠΎΡΠΌΠ΅ΡΡΠ½ΡΡ
Π΄ΠΎΠ½ΠΎΡΠΎΠ² ΡΠΎ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΡΠΌΠΈ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ°ΠΌΠΈ ΠΎΡΠ³Π°Π½ΠΎΠ² ΡΠ²Π»ΡΠ΅ΡΡΡΒ Π³Π»Π°Π²Π½ΠΎΠΉ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠΎΠΉ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ. Π Π°Π·Π²ΠΈΡΠΈΡ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌ ΠΏΠ΅ΡΠ΅ΡΠ°Π΄ΠΊΠΈ ΠΏΠ΅ΡΠ΅Π½ΠΈ ΠΎΡΠ²Π΅ΡΠ°Π΅Ρ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ° ΠΏΠ΅ΡΡΡΠ·ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎΒ Π°ΠΏΠΏΠ°ΡΠ°ΡΠ½ΠΎ-ΡΠ΅Ρ
Π½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½ΠΈΡ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡΠ΅Π³ΠΎ Π²ΠΎΡΡΡΠ°Π½Π°Π²Π»ΠΈΠ²Π°ΡΡ, ΠΏΡΠΎΠ²Π΅ΡΡΡΡ, ΡΠΎΡ
ΡΠ°Π½ΡΡΡ ΠΈΒ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΈΠ²Π°ΡΡ ΠΆΠΈΠ·Π½Π΅ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ ΠΎΡΠ³Π°Π½Π° ex vivo. Π ΡΡΠ°ΡΡΠ΅ ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡΡΡ Π΄Π°Π½Π½ΡΠ΅ ΠΎ ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΠΎΠΌ ΠΎΡΠ΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΌΒ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠΌ ΠΎΠΏΡΡΠ΅ ΠΏΠ΅ΡΡΡΠ·ΠΈΠΈ Π΄ΠΎΠ½ΠΎΡΡΠΊΠΎΠΉ ΠΏΠ΅ΡΠ΅Π½ΠΈ Π½Π° ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΠΎΠΌ ΠΏΠ΅ΡΡΡΠ·ΠΈΠΎΠ½Π½ΠΎΠΌ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ΅.ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. ΠΠ»Ρ Π°ΠΏΡΠΎΠ±Π°ΡΠΈΠΈ Π½ΠΎΡΠΌΠΎΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠ΅ΡΡΡΠ·ΠΈΠΈ Π΄ΠΎΠ½ΠΎΡΡΠΊΠΎΠΉ ΠΏΠ΅ΡΠ΅Π½ΠΈ Π² ΡΠ΅Π»ΡΡ
Π²ΠΎΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΡΒ ΠΈ ΡΠΎΡ
ΡΠ°Π½Π΅Π½ΠΈΡ ΠΆΠΈΠ·Π½Π΅ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ ΠΎΡΠ³Π°Π½Π° ΠΏΠΎΡΠ»Π΅ 30-ΠΌΠΈΠ½ΡΡΠ½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄Π° Π°ΡΠΈΡΡΠΎΠ»ΠΈΠΈ Π±ΡΠ» ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Β ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΠΉ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠΉ ΠΎΠ±ΡΠ°Π·Π΅Ρ Π°ΠΏΠΏΠ°ΡΠ°ΡΠ½ΠΎ-ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ° (ΠΠΠ). ΠΠΏΠΏΠ°ΡΠ°Ρ Π΄Π»ΡΒ ΠΏΠ΅ΡΡΡΠ·ΠΈΠΈ Π΄ΠΎΠ½ΠΎΡΡΠΊΠΎΠΉ ΠΏΠ΅ΡΠ΅Π½ΠΈ ex vivo Π±ΡΠ» ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½ Π² Π€ΠΠΠΠ£ Β«Π¦Π΅Π½ΡΡΠ°Π»ΡΠ½ΡΠΉ Π½Π°ΡΡΠ½ΠΎ-ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΡΠΊΠΈΠΉΒ ΠΈ ΠΎΠΏΡΡΠ½ΠΎ-ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΎΡΡΠΊΠΈΠΉ ΠΈΠ½ΡΡΠΈΡΡΡ ΡΠΎΠ±ΠΎΡΠΎΡΠ΅Ρ
Π½ΠΈΠΊΠΈ ΠΈ ΡΠ΅Ρ
Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΊΠΈΠ±Π΅ΡΠ½Π΅ΡΠΈΠΊΠΈΒ» (Π¦ΠΠΠ Π Π’Π) ΠΏΡΠΈ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΠ΅Β ΠΠΈΠ½ΠΈΡΡΠ΅ΡΡΡΠ²Π° ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΠΈ Π½Π°ΡΠΊΠΈ Π Π€. ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½Ρ Π±ΡΠ» ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ Π½Π° ΠΈΠ·ΠΎΠ»ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΏΠ΅ΡΠ΅Π½ΠΈΒ ΡΠ²ΠΈΠ½ΡΠΈ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΌΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΡΠΌΠΈ ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΡΠΌΠΈ ΠΊ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡΠΌ Π½Π° ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ
.Π Π΅Π·ΡΠ»ΡΡΠ°Ρ. Π ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΠΏΠ΅ΡΡΡΠ·ΠΈΠΈ Π½Π°Π±Π»ΡΠ΄Π°Π»ΠΎΡΡ ΡΠΏΠΎΠ½ΡΠ°Π½Π½ΠΎΠ΅ Π²ΠΎΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ ΠΎΡΡΠΎΠΊΠ° ΠΆΠ΅Π»ΡΠΈ ΡΠ΅ΡΠ΅Π· ΠΊΠ°Π½ΡΠ»Ρ,Β ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π½ΡΡ Π² ΠΎΠ±ΡΠΈΠΉ ΠΆΠ΅Π»ΡΠ½ΡΠΉ ΠΏΡΠΎΡΠΎΠΊ (ΠΎΠ±ΡΠ΅ΠΌ ΠΎΡΠ΄Π΅Π»ΡΠ΅ΠΌΠΎΠΉ ΠΆΠ΅Π»ΡΠΈ β 240 ΠΌΠ»), ΡΠ²Π΅Ρ ΠΈ ΠΎΠ΄Π½ΠΎΡΠΎΠ΄Π½ΠΎΡΡΡΒ ΠΏΠ΅ΡΡΡΠ·ΠΈΡΡΠ΅ΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅Π½ΠΈ Π½Π΅ ΠΎΡΠ»ΠΈΡΠ°Π»ΠΈΡΡ ΠΎΡ Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΡΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ². ΠΠΈΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ ΡΡΠ°Π±ΠΈΠ»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π»ΠΈΡΡΒ Π½Π° ΡΡΠΎΠ²Π½Π΅ ΡΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΠ΅ΡΠ΅Π· 40 ΠΌΠΈΠ½ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΠ³ΠΎ ΡΠ΅Π°Π½ΡΠ° Π½ΠΎΡΠΌΠΎΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉΒ Π°ΠΏΠΏΠ°ΡΠ°ΡΠ½ΠΎΠΉ ΠΏΠ΅ΡΡΡΠ·ΠΈΠΈ.ΠΡΠ²ΠΎΠ΄. Π ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΉ Π°ΠΏΡΠΎΠ±Π°ΡΠΈΠΈ ΠΠΠ Π½Π° ΡΠ²ΠΈΠ½ΠΎΠΉ ΠΏΠ΅ΡΠ΅Π½ΠΈ ΠΏΡΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΠΎΠ²Π°Π½ΠΎ,Β ΡΡΠΎ Π½ΠΎΠ²ΠΎΠ΅ ΡΡΡΡΠΎΠΉΡΡΠ²ΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΡΡ Π½ΠΎΡΠΌΠΎΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΡΡ ΠΏΠ΅ΡΡΡΠ·ΠΈΡ ΠΈ ΡΠ΅ΠΌ ΡΠ°ΠΌΡΠΌΒ Π²ΠΎΡΡΡΠ°Π½Π°Π²Π»ΠΈΠ²Π°ΡΡ ΡΡΠ½ΠΊΡΠΈΡ ΠΏΠ΅ΡΠ΅Π½ΠΈ ΠΏΠΎΡΠ»Π΅ 30-ΠΌΠΈΠ½ΡΡΠ½ΠΎΠΉ ΡΠ΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ ΠΈΡΠ΅ΠΌΠΈΠΈ. ΠΠ΅ΡΠ²ΠΎΠ΅ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π°ΠΏΠΏΠ°ΡΠ°ΡΠ°Β ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ ΠΎΠ±Π½Π°Π΄Π΅ΠΆΠΈΠ²Π°ΡΡΠΈΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ. Π’ΡΠ΅Π±ΡΡΡΡΡ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠΈΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π΄Π»Ρ Π²Π½Π΅Π΄ΡΠ΅Π½ΠΈΡ Π² ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΡΡΒ ΠΏΡΠ°ΠΊΡΠΈΠΊΡ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² Π°ΠΏΠΏΠ°ΡΠ°ΡΠ½ΠΎΠ³ΠΎ Π²ΠΎΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΡ ΠΈ ΡΠΎΡ
ΡΠ°Π½Π΅Π½ΠΈΡ ΠΆΠΈΠ·Π½Π΅ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈΒ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΎΠ² ex vivo
Disinfection of Surfaces Contaminated with SARS-CoV-2 Coronavirus by UV Radiation of Low-Pressure Mercury-Vapour Lamp
The aim of the work was to determine the effective ultraviolet (UV) doses required for the disinfection of surfaces contaminated with the SARS-CoV-2 coronavirus using a low-pressure mercury lamp. Materials and methods. To carry out prompt disinfection of surfaces, a specially designed source of UV radiation with a power of 7.5 W at a wavelength of 254 nm in the form of a portable flashlight was employed, which has a high efficiency of UV radiation output and the possibility of long-term autonomous operation from a compact battery. In the studies, a suspension culture of the SARS-CoV-2 coronavirus with biological activity of 5.3β106 PFU/ml was used. The objects of testing were plastic Petri dishes (disposable) and office paper (grade C, density 80 g/m2 ). Results and discussion. Doses of UV radiation that provide disinfection of surfaces contaminated with the COVID-19 pathogen with an efficiency of 99.0 % (paper) to 99.95 % (plastic) have been determined. The results obtained make it possible to recommend a portable UV irradiator for use in the practice of preventive measures to combat the spread of the disease caused by the SARS-CoV-2 coronavirus
Laserforschung. Erarbeitung physikalischer Grundlagen und technischer Konzepte zur On-line Kontrolle und Qualitaetsregelung fuer das Laserschweissen Abschlussbericht
In relationship with the University of St. Petersburg, established as an international co-operation, the scientific and technological basis for a laser welding quality insurance system was worked out. Foundation for this investigation are theoretical models of the static and dynamic behaviour of the melting zone and the keyhole. The reaction of the plasma plume was studied with respect to the influence of the keyhole. The scientific findings created the basis for the on-line process inspection. As part of the investigation, first experience also in the practical implementation of the results were achieved. A prototype, based on the scientific findings, was built up. The innovation of this system is based on multi-sensor technology, in order to detect fast process fluctuations. Especially by measuring the dependencies of angle and dimension of the plasma plume, the variation of the penetration depth was discovered. (orig.)Summary in GermanAvailable from TIB Hannover: F00B297+a / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEBundesministerium fuer Bildung und Forschung (BMBF), Bonn (Germany)DEGerman
State and parameters of the material in the zone of interaction of the beam in deep penetration laser welding
30.00; Translated from Russian (Fiz. Khim. Obrab. Mater. 1989 v. 23(2) p. 104-115)Available from British Library Document Supply Centre- DSC:9023.19(VR-Trans--4509)T / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo