69 research outputs found
Development of the self-modulation instability of a relativistic proton bunch in plasma
Self-modulation is a beamâplasma instability that is useful to drive large-amplitude wakefields with bunches much longer than the plasma skin depth. We present experimental results showing that, when increasing the ratio between the initial transverse size of the bunch and the plasma skin depth, the instability occurs later along the bunch, or not at all, over a fixed plasma length because the amplitude of the initial wakefields decreases. We show cases for which self-modulation does not develop, and we introduce a simple model discussing the conditions for which it would not occur after any plasma length. Changing bunch size and plasma electron density also changes the growth rate of the instability. We discuss the impact of these results on the design of a particle accelerator based on the self-modulation instability seeded by a relativistic ionization front, such as the future upgrade of the Advanced WAKefield Experiment
Simulation and experimental study of proton bunch self-modulation in plasma with linear density gradients
We present numerical simulations and experimental results of the self-modulation of a long proton bunch in a plasma with linear density gradients along the beam path. Simulation results agree with the experimental results reported [F. Braunmller, T. Nechaeva et al. (AWAKE Collaboration), Phys. Rev. Lett. 125, 264801 (2020)PRLTAO0031-900710.1103/PhysRevLett.125.264801]: with negative gradients, the charge of the modulated bunch is lower than with positive gradients. In addition, the bunch modulation frequency varies with gradient. Simulation results show that dephasing of the wakefields with respect to the relativistic protons along the plasma is the main cause for the loss of charge. The study of the modulation frequency reveals details about the evolution of the self-modulation process along the plasma. In particular for negative gradients, the modulation frequency across time-resolved images of the bunch indicates the position along the plasma where protons leave the wakefields. Simulations and experimental results are in excellent agreement
Simulation and experimental study of proton bunch self-modulation in plasma with linear density gradients
We present numerical simulations and experimental results of the self-modulation of a long proton bunch in a plasma with linear density gradients along the beam path. Simulation results agree with the experimental results reported [F. Braunmller, T. Nechaeva et al. (AWAKE Collaboration), Phys. Rev. Lett. 125, 264801 (2020)]: with negative gradients, the charge of the modulated bunch is lower than with positive gradients. In addition, the bunch modulation frequency varies with gradient. Simulation results show that dephasing of the wakefields with respect to the relativistic protons along the plasma is the main cause for the loss of charge. The study of the modulation frequency reveals details about the evolution of the self-modulation process along the plasma. In particular for negative gradients, the modulation frequency across time-resolved images of the bunch indicates the position along the plasma where protons leave the wakefields. Simulations and experimental results are in excellent agreement
Hosing of a Long Relativistic Particle Bunch in Plasma
Experimental results show that hosing of a long particle bunch in plasma can be induced by wakefields driven by a short, misaligned preceding bunch. Hosing develops in the plane of misalignment, self-modulation in the perpendicular plane, at frequencies close to the plasma electron frequency, and are reproducible. Development of hosing depends on misalignment direction, its growth on misalignment extent and on proton bunch charge. Results have the main characteristics of a theoretical model, are relevant to other plasma-based accelerators and represent the first characterization of hosing
Transition between Instability and Seeded Self-Modulation of a Relativistic Particle Bunch in Plasma
We use a relativistic ionization front to provide various initial transverse wakefield amplitudes for the self-modulation of a long proton bunch in plasma. We show experimentally that, with sufticient initial amplitude [>= (4.1 +/- 0.4) MV/m], the phase of the modulation along the bunch is reproducible from event to event, with 3%-7% (of 2 pi) rms variations all along the bunch. The phase is not reproducible for lower initial amplitudes. We observe the transition between these two regimes. Phase reproducibility is essential for deterministic external injection of particles to be accelerated
Clinical application and reliability of a post abdominal surgery pain assessment scale (PASPAS) in horses
The aim of this study was to refine a multi-dimensional scale based on physiological and behavioural parameters, known as the post abdominal surgery pain assessment scale (PASPAS), to quantify pain after laparotomy in horses. After a short introduction, eight observers used the scale to assess eight horses at multiple time points after laparotomy. In addition, a single observer was used to test the correlation of each parameter with the total pain index in 34 patients, and the effect of general anaesthesia on PASPAS was investigated in a control group of eight horses. Inter-observer variability was low (coefficient of variation 0.3), which indicated good reliability of PASPAS. The correlation of individual parameters with the total pain index differed between parameters. PASPAS, which was not influenced by general anaesthesia, was a useful tool to evaluate pain in horses after abdominal surgery and may also be useful to investigate analgesic protocols or for teaching purposes
Neutron reflectometry and spectroscopic ellipsometry studies of cross linked poly dimethylsiloxane after irradiation at 172 nm
Poly dimethylsiloxane PDMS was irradiated under ambient conditions in air with a Xe2 excimer lamp. The formation of atomic oxygen and ozone during irradiation in air by V UV photons results in the transformation of PDMS to silicon oxide. The irradiated surfaces were studied by spectroscopic ellipsometry and neutron reflectometry. The measurements revealed the formation of a rough, i.e., between 11 and 20 nm, oxidized surface layer and a decrease of the total layer thickness. The thickness of the oxidized layer decreased for a given PDMS thickness when the polymer was irradiated for longer times and or higher intensities. The composition of the oxidized layer after irradiation was not uniform through the layer and consisted of a mixture of original polymer and silicon bonded to three or four oxygen atoms SiOx . The refractive index n determined by ellipsometry reaches a value similar to values reported for SiO
- âŠ