32 research outputs found

    Petrological-geochemical features of ore-bearing effusive and intrusive rocks of the Nikolaevskoe gold-porphyry deposit (the Southern Urals)

    Get PDF
    Object. The article considers the results of geochemical studies of ore-bearing effusive and intrusive rocks of the Nikolaevka gold deposit, located in the zone of the Main Uralian fault in the Southern Urals. The deposit belongs to the gold-porphyry type which unconventional for the Urals and poorly studied here. Methods. The rock composition was determined by chemical analysis (IG UFRC RAS), mass-spectrometry with inductively coupled plasma on the ELAH 9000 quadrupole mass-spectrometer (IGG UB RAS) and X-ray fluorescence analysis on the VRA 30 spectrometer (IG UFRC RAS). Results. It is established that gold-porphyry mineralization associated with an island-arc volcanic-intrusive complex that unites plagiophyric and pyroxene-plagiophyric basalts, their tuffs, gabbro intrusions and ore-bearing series of dikes plagiophyric dolerite-porphyrites and gabbro-diorite-porphyrites. The rocks of the complex, including ore-bearing dikes, have normal alkalinity, tholeitic and transition from tholeitic to calc-alkaline composition. Among the volcanogenic formations, faunistically dated in the zone of the Main Ural fault in the Southern Urals, by a number of geochemical parameters (for example, the ratios of Zr/Nb and Nb/Th) the effusive and intrusive rocks of the deposit are the closest to the volcanics of the pyrite-bearing Baymak-Buribay Formation (D1e2), lying at the base of the section of the Magnitogorsk island arc, and, in all probability, are their age analog. At the same time, the gold-bearing complex differs from the Baymak-Buribay Formation by a general increased iron and titanium content, with a reduced magnesia of all rock types, as well as the absence of boninites and acid volcanics, the predominance of porphyry rock types, which can be due to the geodynamic conditions of its formation. Conclusion. Geodynamic analysis of geochemical data using diagrams (La/Sm)N-TiO2 and V-Ti/1000 suggests that the Nikolaevka deposit was formed in the articulation zone of the island arc and the back-arc basin. Gold-porphyry mineralization associated with the Late Emsian volcanic processes was isolated in the Southern Urals for the first time

    Π’ΠΎΠ»Π½ΠΎΠ²Ρ‹Π΅ процСссы Π² Π΄Ρ€Π΅ΠΉΡ„ΡƒΡŽΡ‰Π΅ΠΌ Π»ΡŒΠ΄Ρƒ CΠ΅Π²Π΅Ρ€Π½ΠΎΠ³ΠΎ Π›Π΅Π΄ΠΎΠ²ΠΈΡ‚ΠΎΠ³ΠΎ ΠΎΠΊΠ΅Π°Π½Π° Π² экспСдиции MOSAiC. Π—ΠΈΠΌΠ½ΠΈΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄

    Get PDF
    One of the main directions of theoretical and applied research in the Arctic is the study of physical and mechanical processes in the atmosphere β€” ice β€” ocean system. For this purpose, theoretical and experimental problems are solved. The paper employs the method of monitoring the state of drifting ice by means of autonomous seismic stations in the MOSAiC international expedition in 2019–2020. The method of remote registration of ice information with a discreteness of 100 Hz made it possible to obtain data on the processes of compression and crushing of ice of various temporal and spatial scales. The paper presents early findings on the development of physico-mechanical processes in the ice cover under the influence of wind, oceanic gravitational waves, compression and crushing phenomena during large-scale deformations in drifting ice. The amplitude-frequency spectra of surface gravitational waves obtained in this work provide sufficient reason for attributing the phenomena described to swell waves and infra-gravity waves that occur in the stormy areas of the oceans. New data have been obtained on low-frequency horizontally polarized waves caused by the compression of ice and movements along breaks in the cohesive ice cover. The article considers the possibilities of using instrumental monitoring of the occurrence and development of tidal compression and crushing in the drifting ice of the Arctic Ocean. The results obtained can be used to develop methods for predicting the state of ice in real time both in engineering tasks and for improving weather and climate forecasting models.Одной ΠΈΠ· основных Π½Π°ΡƒΡ‡Π½Ρ‹Ρ… ΠΈ ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ Π² АрктикС ΡΠ²Π»ΡΡŽΡ‚ΡΡ исслСдования Ρ„ΠΈΠ·ΠΈΠΊΠΎ-мСханичСских процСссов Π² систСмС атмосфСра β€” Π»Π΅Π΄ β€” ΠΎΠΊΠ΅Π°Π½. Π‘ этой Ρ†Π΅Π»ΡŒΡŽ Ρ€Π΅ΡˆΠ°ΡŽΡ‚ΡΡ тСорСтичСскиС ΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ. Π’ настоящСй Ρ€Π°Π±ΠΎΡ‚Π΅ использовался ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³Π° состояния Π΄Ρ€Π΅ΠΉΡ„ΡƒΡŽΡ‰Π΅Π³ΠΎ льда с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½Ρ‹Ρ… сСйсмичСских станций Π² ΠΌΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½ΠΎΠΉ экспСдиции MOSAiC Π² 2019–2020 Π³Π³. ΠœΠ΅Ρ‚ΠΎΠ΄ дистанционной рСгистрации Π»Π΅Π΄ΠΎΠ²ΠΎΠΉ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ с Π΄ΠΈΡΠΊΡ€Π΅Ρ‚Π½ΠΎΡΡ‚ΡŒΡŽ100 Π“Ρ† ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π΄Π°Π½Π½Ρ‹Π΅ ΠΎ процСссах сТатия ΠΈ Ρ‚ΠΎΡ€ΠΎΡˆΠ΅Π½ΠΈΡ льдов Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΈ пространствСнного ΠΌΠ°ΡΡˆΡ‚Π°Π±Π°. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ прСдставлСны ΠΏΠ΅Ρ€Π²Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΎ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ Ρ„ΠΈΠ·ΠΈΠΊΠΎ-мСханичСских процСссов Π² лСдяном ΠΏΠΎΠΊΡ€ΠΎΠ²Π΅ ΠΏΡ€ΠΈ воздСйствии Π²Π΅Ρ‚Ρ€Π°, окСаничСских Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½, явлСниях сТатия ΠΈ Ρ‚ΠΎΡ€ΠΎΡˆΠ΅Π½ΠΈΡ ΠΏΡ€ΠΈ ΠΊΡ€ΡƒΠΏΠ½ΠΎΠΌΠ°ΡΡˆΡ‚Π°Π±Π½Ρ‹Ρ… дСформациях Π² Π΄Ρ€Π΅ΠΉΡ„ΡƒΡŽΡ‰Π΅ΠΌ Π»ΡŒΠ΄Ρƒ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π² Ρ€Π°Π±ΠΎΡ‚Π΅ Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Π½ΠΎ-частотныС спСктры повСрхностных Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½ ΡΠ²Π»ΡΡŽΡ‚ΡΡ основаниСм ΠΎΡ‚Π½ΠΎΡΠΈΡ‚ΡŒ описанныС явлСния ΠΊ Π²ΠΎΠ»Π½Π°ΠΌ Π·Ρ‹Π±ΠΈ ΠΈ ΠΈΠ½Ρ„Ρ€Π°Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΌ Π²ΠΎΠ»Π½Π°ΠΌ, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‰ΠΈΠΌ Π² ΡˆΡ‚ΠΎΡ€ΠΌΠΎΠ²Ρ‹Ρ… Ρ€Π°ΠΉΠΎΠ½Π°Ρ… ΠΎΠΊΠ΅Π°Π½ΠΎΠ². ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Π½ΠΎΠ²Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΎ низкочастотных Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎ-поляризованных Π²ΠΎΠ»Π½Π°Ρ…, обусловлСнных сТатиСм льдов ΠΈ ΠΏΠΎΠ΄Π²ΠΈΠΆΠΊΠ°ΠΌΠΈ ΠΏΠΎ Ρ€Π°Π·Ρ€Ρ‹Π²Π°ΠΌ Π² сплочСнном лСдяном ΠΏΠΎΠΊΡ€ΠΎΠ²Π΅. РассмотрСны возмоТности использования ΠΈΠ½ΡΡ‚Ρ€ΡƒΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³Π° возникновСния ΠΈ развития ΠΏΡ€ΠΈΠ»ΠΈΠ²Π½ΠΎΠ³ΠΎ сТатия ΠΈ Ρ‚ΠΎΡ€ΠΎΡˆΠ΅Π½ΠΈΡ Π² Π΄Ρ€Π΅ΠΉΡ„ΡƒΡŽΡ‰ΠΈΡ… Π»ΡŒΠ΄Π°Ρ… Π‘Π΅Π²Π΅Ρ€Π½ΠΎΠ³ΠΎ Π›Π΅Π΄ΠΎΠ²ΠΈΡ‚ΠΎΠ³ΠΎ ΠΎΠΊΠ΅Π°Π½Π°. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ для Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² прогнозирования состояния льдов Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΊΠ°ΠΊ Π² ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡Π°Ρ…, Ρ‚Π°ΠΊ ΠΈ для ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΡ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·Π° ΠΏΠΎΠ³ΠΎΠ΄Ρ‹ ΠΈ ΠΊΠ»ΠΈΠΌΠ°Ρ‚Π°

    Current status of nuclear cardiology in the Russian Federation

    Get PDF
    The article is devoted to the analysis of the current status of nuclear cardiology in the Russian Federation. The data on the number of facilities performing radionuclide investigations for the diagnosis and monitoring of the treatment of cardiovascular diseases, their staffing and equipment are given. The statistics of the conducted nuclear cardiology tests for 2018-2020 are given, as well as their methods, features and diagnostic significance are described

    >

    No full text
    corecore