167 research outputs found

    N-Methyl D-Aspartate Receptor Antagonist Kynurenic Acid Affects Human Cortical Development

    Get PDF
    Kynurenic acid (KYNA), a neuroactive metabolite of tryptophan degradation, acts as an endogenous N-methyl-D-aspartate receptor (NMDAR) antagonist. Elevated levels of KYNA have been observed in pregnant women after viral infections and are considered to play a role in neurodevelopmental disorders. However, the consequences of KYNA-induced NMDAR blockade in human cortical development still remain elusive. To study the potential impact of KYNA on human neurodevelopment, we used an in vitro system of multipotent cortical progenitors, i.e., radial glia cells (RGCs), enriched from human cerebral cortex at mid-gestation (16-19 gestational weeks). KYNA treatment significantly decreased RGCs proliferation and survival by antagonizing NMDAR. This alteration resulted in a reduced number of cortical progenitors and neurons while number and activation of astrocytes increased. KYNA treatment reduced differentiation of RGCs into GABAergic neurons, while differentiation into glutamatergic neurons was relatively spared. Furthermore, in mixed cortical cultures KYNA triggered an inflammatory response as evidenced by increased levels of the pro-inflammatory cytokine IL-6. In conclusion, elevated levels of KYNA play a significant role in human RGC fate determination by antagonizing NMDARs and by activating an inflammatory response. The altered cell composition observed in cell culture following exposure to elevated KYNA levels suggests a mechanism for impairment of cortical circuitry formation in the fetal brain after viral infection, as seen in neurodevelopmental disorders such as schizophrenia

    Sonic hedgehog promotes generation and maintenance of human forebrain Olig2 progenitors

    Full text link
    Function of oligodendrocytes (OLs), myelin forming cells in the CNS, is disrupted in demyelinating diseases such as periventricular leukomalacia or multiple sclerosis. It is, thus, important to better understand factors that can affect generation or differentiation of human OLs. In rodents, Sonic hedgehog (Shh) is influencing expression of Olig2, a helix-loop-helix transcription factor required for development of OLs. In humans, Olig2 is present in cortical progenitors at midgestation, however the role of Shh in the specification of human OLs, including Olig2 positive (Olig2+) progenitors, is not fully understood. Here we studied in vitro effects of Shh signaling on proliferation and specification of human cortical Olig2+ progenitors at midgestation. First, we established that the spatial pattern of Olig2 expression in the human developing CNS, described on cryosections, was preserved in mixed and enriched radial glia cell (RGC) cultures. Next, we demonstrated that in vitro treatment with Shh induced an increase in the number of Olig2+ progenitors. Shh treatment increased the density of early oligodendrocyte progenitors (OPCs) at the expense of RGC, while the number of late OPCs, did not change. However, inhibition of endogenous Shh with cyclopamine did not reduce the density of Olig2+ cells, implying the presence of an additional Shh-independent mechanism for OLs generation in vitro. These results suggest that the primary role of Shh signaling in the human dorsal oligodendrogenesis is the expansion and specification of multipotent radial glia progenitors into Olig2+ early OPCs. These results obtained in vitro are relevant to understand primary myelination during CNS development, as well as remyelination in demyelinating diseases

    Agricultural Academy

    Get PDF
    Abstract ZECEVIC, V., J. BOSKOVIC, M. DIMITRIJEVIC and S. PETROVIC, 2010. Genetic and phenotypic variability of yield components in wheat (Triticum aestivum L.). Bulg. J. Agric. Sci., Variability, heritability and components of variance for number of grains per spike and grain weight per spike have been studied in 10 winter wheat varieties from different selection centers (Arsenal, KG-56, Gruza, Mironovskaya 808, Norin 10, Rana Niska, Spartanka, Sterna, Osjecanka, and Szegedi 765). The experiment was performed in randomized block design in three replications on the experimental field of Small Grains Research Centre, Kragujevac in three years. Average estimated values for number of grains per spike and grain weight per spike differed significantly among years and among varieties. The highest average value for number of grains per spike had Szegedi 765 variety ( x = 75.1) and the lowest value was found in Spartanka ( x = 56.0). During investigated period the highest average value for grain weight per spike was determined in Gruza ( x = 2.9 g), and the lowest value in Norin 10 ( x = 2.0 g). The average variation coefficient for number of grains per spike was 17.4%, and for grain weight per spike was 21.4%. The lowest variability for number of grains per spike and grain weight per spike was established in Sterna variety (V = 13.0%; 16.2%, respectively) and the highest in Norin 10 variety (V = 21.6%; 25.1%, respectively). Obtained heritability value in broad sense for number of grains per spike was about 60%, and for grain weight per spike about 40%. Statistical analysis of variance established highly significant differences in mean values for number of grains per spike and grain weight per spike. Phenotypic analysis of variance indicated that ecological factors had higher impact on the expression of number of grains per spike and grain weight per spike than genetic factors

    The complexity of the calretinin-expressing progenitors in the human cerebral cortex

    Full text link
    The complex structure and function of the cerebral cortex critically depend on the balance of excitation and inhibition provided by the pyramidal projection neurons and GABAergic interneurons, respectively.The calretinin-expressing (CalR+) cell is a subtype of GABAergic cortical interneurons that is more prevalent in humans than in rodents. In rodents, CalR+ interneurons originate in the caudal ganglionic eminence (CGE) from Gsx2+ progenitors, but in humans it has been suggested that a subpopulation of CalR+ cells can also be generated in the cortical ventricular/subventricular zone (VZ/SVZ). The progenitors for cortically generated CalR+ subpopulation in primates are not yet characterized. Hence, the aim of this study was to identify patterns of expression of the transcription factors (TFs) that commit cortical stem cells to the CalR fate, with a focus on Gsx2. First, we studied the expression of Gsx2 and its downstream effectors, Ascl1 and Sp8 in the cortical regions of the fetal human forebrain at midgestation. Next, we established that a subpopulation of cells expressing these TFs are proliferating in the cortical SVZ, and can be co-labeled with CalR. The presence and proliferation of Gsx2+ cells, not only in the ventral telencephalon (GE) as previously reported, but also in the cerebral cortex suggests cortical origin of a subpopulation of CalR+ neurons in humans. In vitro treatment of human cortical progenitors with Sonic hedgehog (Shh), an important morphogen in the specification of interneurons, decreased levels of Ascl1 and Sp8 proteins, but did not affect Gsx2 levels. Taken together, our ex-vivo and in vitro results on human fetal brain suggest complex endogenous and exogenous regulation of TFs implied in the specification of different subtypes of CalR+ cortical interneurons

    Anti-phase synchronization of phase-reduced oscillators using open-loop control

    Full text link
    In this letter, we present an elegant method to build and maintain an anti-phase configuration of two nonlinear oscillators with different natural frequencies and dynamics described by the sinusoidal phase-reduced model. The anti-phase synchronization is achieved using a common input that couples the oscillators and consists of a sequence of square pulses of appropriate amplitude and duration. This example provides a proof of principle that open-loop control can be used to create desired synchronization patterns for nonlinear oscillators, when feedback is expensive or impossible to obtain

    Diversity of Cortical Interneurons in Primates: The Role of the Dorsal Proliferative Niche

    Get PDF
    Summary Evolutionary elaboration of tissues starts with changes in the genome and location of the stem cells. For example, GABAergic interneurons of the mammalian neocortex are generated in the ventral telencephalon and migrate tangentially to the neocortex, in contrast to the projection neurons originating in the ventricular/subventricular zone (VZ/SVZ) of the dorsal telencephalon. In human and nonhuman primates, evidence suggests that an additional subset of neocortical GABAergic interneurons is generated in the cortical VZ and a proliferative niche, the outer SVZ. The origin, magnitude, and significance of this species-specific difference are not known. We use a battery of assays applicable to the human, monkey, and mouse organotypic cultures and supravital tissue to identify neuronal progenitors in the cortical VZ/SVZ niche that produce a subset of GABAergic interneurons. Our findings suggest that these progenitors constitute an evolutionary novelty contributing to the elaboration of higher cognitive functions in primates

    Morpholino Gene Knockdown in Adult Fundulus heteroclitus: Role of SGK1 in Seawater Acclimation

    Get PDF
    The Atlantic killifish (Fundulus heteroclitus) is an environmental sentinel organism used extensively for studies on environmental toxicants and salt (NaCl) homeostasis. Previous research in our laboratory has shown that rapid acclimation of killifish to seawater is mediated by trafficking of CFTR chloride channels from intracellular vesicles to the plasma membrane in the opercular membrane within the first hour in seawater, which enhances chloride secretion into seawater, thereby contributing to salt homeostasis. Acute transition to seawater is also marked by an increase in both mRNA and protein levels of serum glucocorticoid kinase 1 (SGK1) within 15 minutes of transfer. Although the rise in SGK1 in gill and its functional analog, the opercular membrane, after seawater transfer precedes the increase in membrane CFTR, a direct role of SGK1 in elevating membrane CFTR has not been established in vivo. To test the hypothesis that SGK1 mediates the increase in plasma membrane CFTR we designed two functionally different vivo-morpholinos to knock down SGK1 in gill, and developed and validated a vivo-morpholino knock down technique for adult killifish. Injection (intraperitoneal, IP) of the splice blocking SGK1 vivo-morpholino reduced SGK1 mRNA in the gill after transition from fresh to seawater by 66%. The IP injection of the translational blocking and splice blocking vivo-morpholinos reduced gill SGK1 protein abundance in fish transferred from fresh to seawater by 64% and 53%, respectively. Moreover, knock down of SGK1 completely eliminated the seawater induced rise in plasma membrane CFTR, demonstrating that the increase in SGK1 protein is required for the trafficking of CFTR from intracellular vesicles in mitochondrion rich cells to the plasma membrane in the gill during acclimation to seawater. This is the first report of the use of vivo-morpholinos in adult killifish and demonstrates that vivo-morpholinos are a valuable genetic tool for this environmentally relevant model organism
    corecore