1,082 research outputs found

    Casimir dependence of transverse distribution of pairs produced from a strong constant chromo-electric background field

    Get PDF
    The transverse distribution of gluon and quark-antiquark pairs produced from a strong constant chromo-electric field depends on two gauge invariant quantities, C1=EaEaC_1=E^aE^a and C2=[dabcEaEbEc]2C_2=[d_{abc}E^aE^bE^c]^2, as shown earlier in [G.C. Nayak and P. van Nieuwenhuizen, Phys. Rev. D 71, 125001 (2005)] for gluons and in [G.C. Nayak, Phys. Rev. D 72, 125010 (2005)] for quarks. Here, we discuss the explicit dependence of the distribution on the second Casimir invariant, C_2, and show the dependence is at most a 15% effect.Comment: 5 fig

    New relations between spinor and scalar one-loop effective Lagrangians in constant background fields

    Full text link
    Simple new relations are presented between the one-loop effective Lagrangians of spinor and scalar particles in constant curvature background fields, both electromagentic and gravitational. These relations go beyond the well-known cases for self-dual background fields

    Quantum Electro and Chromodynamics treated by Thompson's heuristic approach

    Full text link
    In this work we apply Thompson's method (of the dimensions and scales) to study some features of the Quantum Electro and Chromodynamics. This heuristic method can be considered as a simple and alternative way to the Renormalisation Group (R.G.) approach and when applied to QED-lagrangian is able to obtain in a first approximation both the running coupling constant behavior of alpha(mu) and the mass m(mu).The calculations are evaluated just at d_c=4, where d_c is the upper critical dimension of the problem, so that we obtain the logarithmic behavior both for the coupling alpha and the excess of mass Delta m on the energy scale mu. Although our results are well-known in the vast literature of field theories,it seems that one of the advantages of Thompson's method, beyond its simplicity is that it is able to extract directly from QED-lagrangian the physical (finite) behavior of alpha(mu) and m(mu), bypassing hard problems of divergences which normally appear in the conventional renormalisation schemes applied to field theories like QED. Quantum Chromodynamics (QCD) is also treated by the present method in order to obtain the quark condensate value. Besides this, the method is also able to evaluate the vacuum pressure at the boundary of the nucleon. This is done by assumming a step function behavior for the running coupling constant of the QCD, which fits nicely to some quantities related to the strong interaction evaluated through the MIT-bag model.Comment: RevTex, 25 pages, no figure

    Theoretical Physics in the Twentieth Century

    Get PDF

    Slowly decaying classical fields, unitarity, and gauge invariance

    Full text link
    In classical external gauge fields that fall off less fast than the inverse of the evolution parameter (time) of the system the implementability of a unitary perturbative scattering operator (SS-matrix) is not guaranteed, although the field goes to zero. The importance of this point is exposed for the counter-example of low-dimensionally expanding systems. The issues of gauge invariance and of the interpretation of the evolution at intermediate times are also intricately linked to that point.Comment: 8 pages, no figure

    Observability of an induced electric dipole moment of the neutron from nonlinear QED

    Full text link
    It has been shown recently that a neutron placed in an external quasistatic electric field develops an induced electric dipole moment pIND\mathbf{p}_{\mathrm{IND}} due to quantum fluctuations in the QED vacuum. A feasible experiment which could detect such an effect is proposed and described here. It is shown that the peculiar angular dependence of pIND\mathbf{p}_{\mathrm{IND}} on the orientation of the neutron spin leads to a characteristic asymmetry in polarized neutron scattering by heavy nuclei. This asymmetry can be of the order of 10310^{-3} for neutrons with epithermal energies. For thermalized neutrons from a hot moderator one still expects experimentally accessible values of the order of 10410^{-4}. The contribution of the induced effect to the neutron scattering length is expected to be only one order of magnitude smaller than that due to the neutron polarizability from its quark substructure. The experimental observation of this scattering asymmetry would be the first ever signal of nonlinearity in electrodynamics due to quantum fluctuations in the QED vacuum

    Unconventional density wave in CeCoIn_5?

    Full text link
    Very recently large Nernst effect and Seebeck effect were observed above the superconducting transition temperature 2.3K in a heavy fermion superconductor CeCoIn_5. We shall interpret this large Nernst effect in terms of unconventional density wave (UDW), which appears around T=18K. Also the temperature dependence of the Seebeck coefficient below T=18K is described in terms of UDW. Another hallmark for UDW is the angular dependent magnetoresistance, which should be readily accessible experimentally.Comment: 4 pages, 7 figure

    Influence of radiative damping on the optical-frequency susceptibility

    Full text link
    Motivated by recent discussions concerning the manner in which damping appears in the electric polarizability, we show that (a) there is a dependence of the nonresonant contribution on the damping and that (b) the damping enters according to the "opposite sign prescription." We also discuss the related question of how the damping rates in the polarizability are related to energy-level decay rates

    QED vacuum fluctuations and induced electric dipole moment of the neutron

    Full text link
    Quantum fluctuations in the QED vacuum generate non-linear effects, such as peculiar induced electromagnetic fields. In particular, we show here that an electrically neutral particle, possessing a magnetic dipole moment, develops an induced electric dipole-type moment with unusual angular dependence, when immersed in a quasistatic, constant external electric field. The calculation of this effect is done in the framework of the Euler-Heisenberg effective QED Lagrangian, corresponding to the weak field asymptotic expansion of the effective action to one-loop order. It is argued that the neutron might be a good candidate to probe this signal of non-linearity in QED.Comment: A misprint has been corrected, and three new references have been adde
    corecore