312 research outputs found
A Fast and Compact Quantum Random Number Generator
We present the realization of a physical quantum random number generator
based on the process of splitting a beam of photons on a beam splitter, a
quantum mechanical source of true randomness. By utilizing either a beam
splitter or a polarizing beam splitter, single photon detectors and high speed
electronics the presented devices are capable of generating a binary random
signal with an autocorrelation time of 11.8 ns and a continuous stream of
random numbers at a rate of 1 Mbit/s. The randomness of the generated signals
and numbers is shown by running a series of tests upon data samples. The
devices described in this paper are built into compact housings and are simple
to operate.Comment: 23 pages, 6 Figs. To appear in Rev. Sci. Inst
Lambda's, V's and optimal cloning with stimulated emission
We show that optimal universal cloning of the polarization state of photons
can be achieved via stimulated emission in three-level systems, both of the
Lambda and the V type. We establish the equivalence of our systems with coupled
harmonic oscillators, which permits us to analyze the structure of the cloning
transformations realized. These transformations are shown to be equivalent to
the optimal cloning transformations for qubits discovered by Buzek and Hillery,
and Gisin and Massar. The down-conversion cloner discovered previously by some
of the authors is obtained as a limiting case. We demonstrate an interesting
equivalence between systems of Lambda atoms and systems of pairwise entangled V
atoms. Finally we discuss the physical differences between our photon cloners
and the qubit cloners considered previously and prove that the bounds on the
fidelity of the clones derived for qubits also apply in our situation.Comment: 10 page
Characterizing heralded single-photon sources with imperfect measurement devices
Any characterization of a single-photon source is not complete without
specifying its second-order degree of coherence, i.e., its function.
An accurate measurement of such coherence functions commonly requires
high-precision single-photon detectors, in whose absence, only time-averaged
measurements are possible. It is not clear, however, how the resulting
time-averaged quantities can be used to properly characterize the source. In
this paper, we investigate this issue for a heralded source of single photons
that relies on continuous-wave parametric down-conversion. By accounting for
major shortcomings of the source and the detectors--i.e., the multiple-photon
emissions of the source, the time resolution of photodetectors, and our chosen
width of coincidence window--our theory enables us to infer the true source
properties from imperfect measurements. Our theoretical results are
corroborated by an experimental demonstration using a PPKTP crystal pumped by a
blue laser, that results in a single-photon generation rate about 1.2 millions
per second per milliwatt of pump power. This work takes an important step
toward the standardization of such heralded single-photon sources.Comment: 18 pages, 9 figures; corrected Eq. (11) and the description follows
Eq. (22
Bohmian Mechanics and Quantum Information
Many recent results suggest that quantum theory is about information, and
that quantum theory is best understood as arising from principles concerning
information and information processing. At the same time, by far the simplest
version of quantum mechanics, Bohmian mechanics, is concerned, not with
information but with the behavior of an objective microscopic reality given by
particles and their positions. What I would like to do here is to examine
whether, and to what extent, the importance of information, observation, and
the like in quantum theory can be understood from a Bohmian perspective. I
would like to explore the hypothesis that the idea that information plays a
special role in physics naturally emerges in a Bohmian universe.Comment: 25 pages, 2 figure
Integrated optical source of polarization entangled photons at 1310 nm
We report the realization of a new polarization entangled photon-pair source
based on a titanium-indiffused waveguide integrated on periodically poled
lithium niobate pumped by a CW laser at . The paired photons are
emitted at the telecom wavelength of within a bandwidth of .
The quantum properties of the pairs are measured using a two-photon coalescence
experiment showing a visibility of 85%. The evaluated source brightness, on the
order of pairs , associated with its
compactness and reliability, demonstrates the source's high potential for
long-distance quantum communication.Comment: There is a typing mistake in the previous version in the visibility
equation. This mistake doesn't change the result
Probabilistic instantaneous quantum computation
The principle of teleportation can be used to perform a quantum computation
even before its quantum input is defined. The basic idea is to perform the
quantum computation at some earlier time with qubits which are part of an
entangled state. At a later time a generalized Bell state measurement is
performed jointly on the then defined actual input qubits and the rest of the
entangled state. This projects the output state onto the correct one with a
certain exponentially small probability. The sufficient conditions are found
under which the scheme is of benefit.Comment: 4 pages, 1 figur
Quantum correlations in Newtonian space and time: arbitrarily fast communication or nonlocality
We investigate possible explanations of quantum correlations that satisfy the
principle of continuity, which states that everything propagates gradually and
continuously through space and time. In particular, following [J.D. Bancal et
al, Nature Physics 2012], we show that any combination of local common causes
and direct causes satisfying this principle, i.e. propagating at any finite
speed, leads to signalling. This is true even if the common and direct causes
are allowed to propagate at a supraluminal-but-finite speed defined in a
Newtonian-like privileged universal reference frame. Consequently, either there
is supraluminal communication or the conclusion that Nature is nonlocal (i.e.
discontinuous) is unavoidable.Comment: It is an honor to dedicate this article to Yakir Aharonov, the master
of quantum paradoxes. Version 2 contains some more references and a clarified
conclusio
Experimental Quantum Cryptography with Qutrits
We produce two identical keys using, for the first time, entangled trinary
quantum systems (qutrits) for quantum key distribution. The advantage of
qutrits over the normally used binary quantum systems is an increased coding
density and a higher security margin. The qutrits are encoded into the orbital
angular momentum of photons, namely Laguerre-Gaussian modes with azimuthal
index l +1, 0 and -1, respectively. The orbital angular momentum is controlled
with phase holograms. In an Ekert-type protocol the violation of a
three-dimensional Bell inequality verifies the security of the generated keys.
A key is obtained with a qutrit error rate of approximately 10 %.Comment: New version includes additional references and a few minor changes to
the manuscrip
Violation of local realism vs detection efficiency
We put bounds on the minimum detection efficiency necessary to violate local
realism in Bell experiments. These bounds depends of simple parameters like the
number of measurement settings or the dimensionality of the entangled quantum
state. We derive them by constructing explicit local-hidden variable models
which reproduce the quantum correlations for sufficiently small detectors
efficiency.Comment: 6 pages, revtex. Modifications in the discussion for many parties in
section 3, small erros and typos corrected, conclusions unchange
- …