18 research outputs found

    Influence of pressurized ventilation on performance of an emergent macrophyte (Phragmites australis)

    No full text
    1 Pressurized ventilation, which increases gas exchange between aerial and submerged plant parts, has been found in various emergent macrophyte species. We investigated the potential for this mechanism to affect growth, morphology and biomass allocation in Phragmites australis in glasshouse experiments. 2 Inhibition of pressurized ventilation by perforation of stems above the water surface resulted in decreased oxygen concentrations in stem bases and rhizomes. Perforation caused little mechanical damage. 3 Allometric methods were used to evaluate treatment effects on biomass allocation and morphology. 4 Inhibition of pressurized ventilation resulted in decreased allocation to belowground weight and decreased rhizome penetration into the substrate in two of three experiments. Treatment also decreased growth rate, rhizome length and number of rhizomes when substrate had a high organic content. In the third experiment, growth clearly decreased in deep water, although inhibition of pressurized ventilation did not affect growth, biomass allocation or morphology at either of the water depths tested. 5 Decreased allocation to below-ground parts and decreased rhizome lengths may be adaptations to allow the oxygen concentration in roots and rhizomes to be maintained above a critical level when the oxygen supply is low. 6 Pressurized ventilation may improve the performance of P. australis but only under certain conditions (e.g. not when growth rate is low or the substrate has a high redox potential)

    Phenotypic plasticity in Phragmites australis as a functional response to water depth

    No full text
    We have performed investigations to see if the emergent macrophyte Phragmites australis (Cav.) Trin. ex Steud. exhibits phenotypic plasticity as a response to water depth and if such responses in biomass allocation pattern and morphology are functional responses, improving the performance of the plant. In greenhouse experiments plants were grown in deep or shallow water to evaluate plastic responses. Allometric methods were used to handle effects caused by size differences between treatments. To evaluate if phenotypic responses to water depth are functional, the relative growth rate (RGR) of plants acclimatised to shallow or deep water, respectively, were compared in deep water, and the growth of plants in fluctuating and constant water level were compared. When grown in deep (70 or 75 cm), compared to shallow (20 or 5 cm) water, plants allocated proportionally less to below-ground weight, made proportionally fewer but taller stems, and had rhizomes that were situated more superficially in the substrate. Plants acclimatised to shallow water had lower RGR than plants acclimatised to deep water, when they were grown in deep water, and plants in constant water depth (40 cm) grew faster than plants in fluctuating water depth (15/65 cm). In an additional field study, the rhizomes were situated superficially in the sediment in deep, compared to shallow water. We have shown that P. australis acclimatises to deep water with phenotypic plasticity through allocating more resources to stem weight, and also by producing fewer but taller stems, which will act to maintain a positive carbon balance and an effective gas exchange between aerial and below-ground parts. Furthermore, the decreased proportional allocation to below-ground parts probably results in decreased nutrient absorption, decreased anchorage in the sediment and decreased carbohydrate reserves. Thus, in deep water, plants have an increased risk of becoming uprooted and experience decreased growth and dispersal rates
    corecore