9 research outputs found

    Characterization of the anticancer properties of ruthenium-derived compounds: mode of action, optimization and development of experimental tools.

    Get PDF
    Platinum-based compounds are widely used anticancer drugs, despite severe side effects and drug-resistance phenomena. Over the past few years, a new class of platinum-free metal-based compounds, called RDCs (ruthenium-derived compounds), has been introduced with the aim of overcoming these issues. RDCs, in particular RDC11, have shown interesting and peculiar biological properties: a good anticancer activity in vivo, a reduced toxicity on healthy tissues and the ability to induce apoptosis through the induction of the CHOP/DDIT3 protein via a DNA-independent mechanism. Indeed, in contrast to platinum-based drugs, it has been suggested that ruthenium derivatives could exert their cytotoxicity independently from DNA interaction and through direct modulation of the activity of redox enzymes. In our study, we have compared the relative activity of platinum (cisplatin) and ruthenium (RDC11) derivatives on the HIF-1 and mTOR pathways, two pathways that are sensitive to the cellular metabolism. We showed that, unlike cisplatin, RDC11 was able to decrease HIF-1α and HIF-1β protein levels in normoxic and hypoxic conditions, leading to the reduction of the expression of HIF-1 target genes, such as VEGF and GLUT1. We have demonstrated that HIF-1α protein levels downregulation involves a complex mechanism associating changes in HIF-1α protein stability, HIF1α mRNA translation and synthesis. As mTOR controls HIF-1α translation, we analyzed the regulation of this pathway. We showed that, in contrast to cisplatin, RDC11 reduced the phosphorylation of the ribosomal protein S6 and Akt on specific sites that are markers for the activity of the mTORC1 and the mTORC2 complexes of mTOR. This observation correlates with a reduction in mRNA levels of RICTOR and RAPTOR, two components of mTOR. Finally, we showed that the inhibitory effect of RDC11 on the HIF-1 and mTOR pathways is consistent with its ability to reduce angiogenesis and potentiate the antitumor activity of the mTOR inhibitor rapamycin in vivo. Altogether, our results showed that ruthenium-derived compounds strongly impact metabolic pathways. In parallel with the identification of RDCs direct targets, a structure/activity analysis to ameliorate the chemical and pharmacological features of RDCs, has been started. We have demonstrated that by changing ligands around the ruthenium center, it is possible to modulate several parameters, such as the redox value and the lipophilic/hydrophilic status, which might influence the ability of RDCs to enter the cells, to interact with intracellular targets and to alter their functions, as well as to modify their pharmacokinetic and distribution properties into the tissues. We have shown that the optimized RDCs reduce tumor growth in different mouse models and that they are more potent inducers of cancer cell death through the production of reactive oxygen species and activation of caspase 8, while retaining their ability to induce CHOP/DDIT3. The fact that RDC11 was able to target molecular pathways (such as HIF-1α and Akt) directly involved in the development of the metastatic process, led us to wonder whether it could exert an antimetastatic effect. The study of the antimetastatic effects of RDCs prompted us to undertake a further and separate study aimed to set up a model suitable for in vitro tests on chemicals endowed with the capacity to selectively target tumor metastases than being un-selective cytotoxics. We have set up the cell culture conditions suitable to recreate in vitro the metastatization of colorectal cancer cells towards the liver, the preferential site of metastatic colorectal carcinoma, in a model of bioreactor called “plastic mouse”. We have demonstrated that the three different cell lines selected for our study can growth in the same environment, without undergoing modifications in viability and morphology, thus representing a good model for our purpose. In conclusion, the results obtained during my PhD thesis have allowed us to identify a novel mechanism of action of RDC11, which is different from that of classical metal-based drugs, pointing out that platinum and ruthenium-based molecules can act differently, even if the latter was initially designed to mimic cisplatin. The second study has demonstrated the importance that the modifications of the ligands around the ruthenium center play in modulating the cytotoxicity and selectivity of the new generated RDCs towards different cancer types. This can be explained by their ability to interfere with different pathways crucial for cancer metabolism. Finally, we have made a breakthrough in developing an experimental tool to study the metastatic process in vitro. The plastic mouse will be useful in the future to screen potential antimetastatic molecules.I derivati del platino sono ampiamente utilizzati come farmaci antitumorali, nonostante i gravi effetti collaterali e i fenomeni di farmaco-resistenza. Nel corso degli ultimi anni, una nuova classe di composti contenenti un metallo diverso dal platino, chiamati RDCs (ruthenium-derived compounds), è stata introdotta con lo scopo di superare queste limitazioni. Gli RDCs, e in particolare RDC11, hanno mostrato interessanti e peculiari proprietà biologiche: una buona attività antitumorale in vivo, una ridotta tossicità sui tessuti sani e la capacità di indurre l'apoptosi attraverso un meccanismo DNA-indipendente che implica l'induzione della via di segnalazione di CHOP/DDIT3. Contrariamente ai farmaci a base di platino, è stato suggerito che i derivati di rutenio possano esercitare la loro citotossicità indipendentemente dall’interazione con il DNA e attraverso la modulazione diretta dell'attività di enzimi ossido-riduttivi. In questo studio, abbiamo confrontato l'attività dei derivati del platino (cisplatino) e rutenio (RDC11) sulle vie di segnalazione di HIF-1 e mTOR, due vie sensibili al metabolismo cellulare. Abbiamo dimostrato come, a differenza del cisplatino, RDC11 sia in grado di diminuire i livelli di espressione delle proteine HIF-1α e HIF-1β in condizioni di normossia e ipossia, portando alla riduzione dell'espressione dei geni bersaglio di HIF-1α, come VEGF e GLUT1. Abbiamo dimostrato che la down-regulation dei livelli proteici di HIF-1α implica un complesso meccanismo che associa le variazioni della stabilità proteica di HIF-1α con la traduzione dell'mRNA di HIF-1α e la sua sintesi. Dal momento che mTOR controlla la traduzione di HIF-1α, abbiamo analizzato la regolazione di questa via da parte di RDC11. Abbiamo dimostrato che, diversamente dal cisplatino, RDC11 riduce la fosforilazione della proteina ribosomiale S6 e Akt su siti specifici che sono i marcatori per l'attività dei complessi mTORC1 e mTORC2 di mTOR. Questa osservazione è correlata con una riduzione dei livelli di mRNA di RICTOR e RAPTOR, due componenti di mTOR. Infine, abbiamo dimostrato come l'effetto inibitorio di RDC11 sulle vie di HIF-1 e mTOR sia coerente con la sua capacità di ridurre l'angiogenesi e di potenziare l'attività antitumorale della rapamicina, inibitore di mTOR, in vivo. Complessivamente, i nostri risultati hanno dimostrato che i derivati del rutenio hanno un forte impatto su diverse vie metaboliche. In parallelo all'individuazione dei target diretti degli RDCs, è stato avviata un’analisi struttura/attività con lo scopo di migliorare le caratteristiche chimiche e farmacologiche di questi composti. Abbiamo dimostrato come, variando i ligandi attorno all’atomo di rutenio, sia possibile modulare diversi parametri, come il valore redox e lo stato di lipofilicità/idrofilicità, si possa influenzare la capacità degli RDCs di entrare nelle cellule, di interagire con i bersagli intracellulari e di alterare le loro funzioni, così come di modificare le loro proprietà farmacocinetiche e la distribuzione nei tessuti. Abbiamo dimostrato che gli RDCs ottimizzati riducono la crescita tumorale in diversi modelli murini e che sono più potenti induttori del processo apoptotico nelle cellule tumorali attraverso la produzione di specie reattive dell'ossigeno e l'attivazione della caspasi 8, pur mantenendo la loro capacità di indurre la via di CHOP/DDIT3. Il fatto che RDC11 agisca su vie di segnalazione cellulare (come quella di HIF-1α e Akt) direttamente coinvolte nella regolazione del processo metastatico, ci ha indotti a pensare ad un suo possibile effetto su tale processo. Per tale ragione, abbiamo intrapreso uno studio separato al fine di definire un modello cellulare in vitro per testare nuove molecole potenzialmente capaci di bersagliare in maniera selettiva le metastasi tumorali, piuttosto che essere dei composti citotossici non selettivi. Abbiamo creato le condizioni di coltura cellulare ideali per riprodurre in vitro la metastatizzazione di cellule tumorali colorettali verso il fegato, il sito preferenziale del carcinoma colorettale metastatico, in un prototipo di bioreattore chiamato "plastic mouse". Abbiamo dimostrato che le tre diverse linee cellulari selezionate per il nostro studio sono in grado di crescere nel medesimo ambiente, senza subire modifiche della vitalità e morfologia, rappresentando così un buon modello per il nostro obiettivo. In conclusione, i risultati ottenuti durante la mia tesi di dottorato ci hanno permesso di identificare un nuovo meccanismo d'azione di RDC11, diverso da quello dei classici farmaci contenenti un metallo, sottolineando che i derivati del platino e del rutenio possano agire diversamente, anche se questi ultimi sono stati inizialmente progettati per imitare il cisplatino. Il secondo studio ha dimostrato l'importanza che le modificazioni dei ligandi attorno all’atomo di rutenio svolgono nel modulare la citotossicità e la selettività dei nuovi RDCs verso diversi tipi di tumori. Questo può essere spiegato grazie alla loro capacità di interferire con diverse vie di segnalazione, cruciali per il metabolismo delle cellule tumorali. Infine, abbiamo compiuto un passo avanti nello sviluppo di uno prototipo sperimentale per studiare il processo metastatico in vitro. Il plastic mouse risulterà utile in futuro per lo screening di potenziali farmaci antimetastatici

    Induction of caspase 8 and reactive oxygen species by ruthenium-derived anticancer compounds with improved water solubility and cytotoxicity

    No full text
    Organometallic compounds which contain metals, such as ruthenium or gold, have been investigated as a replacement for platinum-derived anticancer drugs. They often show good antitumor effects, but the identification of their precise mode of action or their pharmacological optimization is still challenging. We have previously described a class of ruthenium(II) compounds with interesting anticancer properties. In comparison to cisplatin, these molecules have lower side effects, a reduced ability to interact with DNA, and they induce cell death in absence of p53 through CHOP/DDIT3. We have now optimized these molecules by improving their cytotoxicity and their water solubility. In this article, we demonstrate that by changing the ligands around the ruthenium we modify the ability of the compounds to interact with DNA. We show that these optimized molecules reduce tumor growth in different mouse models and retain their ability to induce CHOP/DDIT3. However, they are more potent inducers of cancer cell death and trigger the production of reactive oxygen species and the activation of caspase 8. More importantly, we show that blocking reactive oxygen species production or caspase 8 activity reduces significantly the activity of the compounds. Altogether our data suggest that water-soluble ruthenium(II)-derived compounds represent an interesting class of molecules that, depending on their structures, can target several pro-apoptotic signaling pathways leading to reactive oxygen species production and caspase 8 activation

    Induction of caspase 8 and reactive oxygen species by ruthenium-derived anticancer compounds with improved water solubility and cytotoxicity

    No full text
    Organometallic compounds which contain metals, such as ruthenium or gold, have been investigated as a replacement for platinum-derived anticancer drugs. They often show good antitumor effects, but the identification of their precise mode of action or their pharmacological optimization is still challenging. We have previously described a class of ruthenium(II) compounds with interesting anticancer properties. In comparison to cisplatin, these molecules have lower side effects, a reduced ability to interact with DNA, and they induce cell death in absence of p53 through CHOP/DDIT3. We have now optimized these molecules by improving their cytotoxicity and their water solubility. In this article, we demonstrate that by changing the ligands around the ruthenium we modify the ability of the compounds to interact with DNA. We show that these optimized molecules reduce tumor growth in different mouse models and retain their ability to induce CHOP/DDIT3. However, they are more potent inducers of cancer cell death and trigger the production of reactive oxygen species and the activation of caspase 8. More importantly, we show that blocking reactive oxygen species production or caspase 8 activity reduces significantly the activity of the compounds. Altogether our data suggest that water-soluble ruthenium(II)-derived compounds represent an interesting class of molecules that, depending on their structures, can target several pro-apoptotic signaling pathways leading to reactive oxygen species production and caspase 8 activation. (C) 2012 Elsevier Inc. All rights reserved

    Gold–phosphine–porphyrin as potential metal-based theranostics

    No full text
    Two new gold-phosphine-porphyrin derivatives were synthesized and fully characterized, and their photophysical properties investigated along a water-soluble analog. The cytotoxicity of the compounds was tested on cancer cells (HCT116 and SW480), and their cell uptake was followed by fluorescence microscopy in vitro (on SW480). The proof that the water-soluble gold-phosphine-porphyrin is a biologically active compound that can be tracked in vitro was clearly established, especially concerning the water-soluble analog. Some preliminary photodynamic therapy (PDT) experiments were also performed. They highlight a dramatic increase of the cytotoxicity when the cells were illuminated for 30 min with white light
    corecore