31 research outputs found

    Quantum Algorithms for Matrix Products over Semirings

    Full text link
    In this paper we construct quantum algorithms for matrix products over several algebraic structures called semirings, including the (max,min)-matrix product, the distance matrix product and the Boolean matrix product. In particular, we obtain the following results. We construct a quantum algorithm computing the product of two n x n matrices over the (max,min) semiring with time complexity O(n^{2.473}). In comparison, the best known classical algorithm for the same problem, by Duan and Pettie, has complexity O(n^{2.687}). As an application, we obtain a O(n^{2.473})-time quantum algorithm for computing the all-pairs bottleneck paths of a graph with n vertices, while classically the best upper bound for this task is O(n^{2.687}), again by Duan and Pettie. We construct a quantum algorithm computing the L most significant bits of each entry of the distance product of two n x n matrices in time O(2^{0.64L} n^{2.46}). In comparison, prior to the present work, the best known classical algorithm for the same problem, by Vassilevska and Williams and Yuster, had complexity O(2^{L}n^{2.69}). Our techniques lead to further improvements for classical algorithms as well, reducing the classical complexity to O(2^{0.96L}n^{2.69}), which gives a sublinear dependency on 2^L. The above two algorithms are the first quantum algorithms that perform better than the O~(n5/2)\tilde O(n^{5/2})-time straightforward quantum algorithm based on quantum search for matrix multiplication over these semirings. We also consider the Boolean semiring, and construct a quantum algorithm computing the product of two n x n Boolean matrices that outperforms the best known classical algorithms for sparse matrices. For instance, if the input matrices have O(n^{1.686...}) non-zero entries, then our algorithm has time complexity O(n^{2.277}), while the best classical algorithm has complexity O(n^{2.373}).Comment: 19 page

    Quantum Algorithms for Finding Constant-sized Sub-hypergraphs

    Full text link
    We develop a general framework to construct quantum algorithms that detect if a 33-uniform hypergraph given as input contains a sub-hypergraph isomorphic to a prespecified constant-sized hypergraph. This framework is based on the concept of nested quantum walks recently proposed by Jeffery, Kothari and Magniez [SODA'13], and extends the methodology designed by Lee, Magniez and Santha [SODA'13] for similar problems over graphs. As applications, we obtain a quantum algorithm for finding a 44-clique in a 33-uniform hypergraph on nn vertices with query complexity O(n1.883)O(n^{1.883}), and a quantum algorithm for determining if a ternary operator over a set of size nn is associative with query complexity O(n2.113)O(n^{2.113}).Comment: 18 pages; v2: changed title, added more backgrounds to the introduction, added another applicatio

    Quantum and approximation algorithms for maximum witnesses of Boolean matrix products

    Full text link
    The problem of finding maximum (or minimum) witnesses of the Boolean product of two Boolean matrices (MW for short) has a number of important applications, in particular the all-pairs lowest common ancestor (LCA) problem in directed acyclic graphs (dags). The best known upper time-bound on the MW problem for n\times n Boolean matrices of the form O(n^{2.575}) has not been substantially improved since 2006. In order to obtain faster algorithms for this problem, we study quantum algorithms for MW and approximation algorithms for MW (in the standard computational model). Some of our quantum algorithms are input or output sensitive. Our fastest quantum algorithm for the MW problem, and consequently for the related problems, runs in time \tilde{O}(n^{2+\lambda/2})=\tilde{O}(n^{2.434}), where \lambda satisfies the equation \omega(1, \lambda, 1) = 1 + 1.5 \, \lambda and \omega(1, \lambda, 1) is the exponent of the multiplication of an n \times n^{\lambda}$ matrix by an n^{\lambda} \times n matrix. Next, we consider a relaxed version of the MW problem (in the standard model) asking for reporting a witness of bounded rank (the maximum witness has rank 1) for each non-zero entry of the matrix product. First, by adapting the fastest known algorithm for maximum witnesses, we obtain an algorithm for the relaxed problem that reports for each non-zero entry of the product matrix a witness of rank at most \ell in time \tilde{O}((n/\ell)n^{\omega(1,\log_n \ell,1)}). Then, by reducing the relaxed problem to the so called k-witness problem, we provide an algorithm that reports for each non-zero entry C[i,j] of the product matrix C a witness of rank O(\lceil W_C(i,j)/k\rceil ), where W_C(i,j) is the number of witnesses for C[i,j], with high probability. The algorithm runs in \tilde{O}(n^{\omega}k^{0.4653} +n^2k) time, where \omega=\omega(1,1,1).Comment: 14 pages, 3 figure

    Combining All Pairs Shortest Paths and All Pairs Bottleneck Paths Problems

    Full text link
    We introduce a new problem that combines the well known All Pairs Shortest Paths (APSP) problem and the All Pairs Bottleneck Paths (APBP) problem to compute the shortest paths for all pairs of vertices for all possible flow amounts. We call this new problem the All Pairs Shortest Paths for All Flows (APSP-AF) problem. We firstly solve the APSP-AF problem on directed graphs with unit edge costs and real edge capacities in O~(tn(ω+9)/4)=O~(tn2.843)\tilde{O}(\sqrt{t}n^{(\omega+9)/4}) = \tilde{O}(\sqrt{t}n^{2.843}) time, where nn is the number of vertices, tt is the number of distinct edge capacities (flow amounts) and O(nω)<O(n2.373)O(n^{\omega}) < O(n^{2.373}) is the time taken to multiply two nn-by-nn matrices over a ring. Secondly we extend the problem to graphs with positive integer edge costs and present an algorithm with O~(tc(ω+5)/4n(ω+9)/4)=O~(tc1.843n2.843)\tilde{O}(\sqrt{t}c^{(\omega+5)/4}n^{(\omega+9)/4}) = \tilde{O}(\sqrt{t}c^{1.843}n^{2.843}) worst case time complexity, where cc is the upper bound on edge costs

    subcubic

    Full text link

    sub-cubic

    Full text link
    © 2019 Society for Industrial and Applied Mathematics It is a major open problem whether the (min, +)-product of two n × n matrices has a truly subcubic (i.e., O(n3−ε) for ε > 0) time algorithm; in particular, since it is equivalent to the famous all-pairs-shortest-paths problem (APSP) in n-vertex graphs. Some restrictions of the (min, +)-product to special types of matrices are known to admit truly subcubic algorithms, each giving rise to a special case of APSP that can be solved faster. In this paper we consider a new, different, and powerful restriction in which all matrix entries are integers and one matrix can be arbitrary, as long as the other matrix has “bounded differences” in either its columns or rows, i.e., any two consecutive entries differ by only a small amount. We obtain the first truly subcubic algorithm for this bounded-difference (min, +)-product (answering an open problem of Chan and Lewenstein). Our new algorithm, combined with a strengthening of an approach of Valiant for solving context-free grammar parsing with matrix multiplication, yields the first truly subcubic algorithms for the following problems: language edit distance (a major problem in the parsing community), RNA folding (a major problem in bioinformatics), and optimum stack generation (answering an open problem of Tarjan)

    An Experimental Study on Approximating k

    Full text link

    Editing to Connected F-Degree Graph

    Full text link

    A fast solver for a class of linear systems

    Full text link
    corecore