31 research outputs found
Quantum Algorithms for Matrix Products over Semirings
In this paper we construct quantum algorithms for matrix products over
several algebraic structures called semirings, including the (max,min)-matrix
product, the distance matrix product and the Boolean matrix product. In
particular, we obtain the following results.
We construct a quantum algorithm computing the product of two n x n matrices
over the (max,min) semiring with time complexity O(n^{2.473}). In comparison,
the best known classical algorithm for the same problem, by Duan and Pettie,
has complexity O(n^{2.687}). As an application, we obtain a O(n^{2.473})-time
quantum algorithm for computing the all-pairs bottleneck paths of a graph with
n vertices, while classically the best upper bound for this task is
O(n^{2.687}), again by Duan and Pettie.
We construct a quantum algorithm computing the L most significant bits of
each entry of the distance product of two n x n matrices in time O(2^{0.64L}
n^{2.46}). In comparison, prior to the present work, the best known classical
algorithm for the same problem, by Vassilevska and Williams and Yuster, had
complexity O(2^{L}n^{2.69}). Our techniques lead to further improvements for
classical algorithms as well, reducing the classical complexity to
O(2^{0.96L}n^{2.69}), which gives a sublinear dependency on 2^L.
The above two algorithms are the first quantum algorithms that perform better
than the -time straightforward quantum algorithm based on
quantum search for matrix multiplication over these semirings. We also consider
the Boolean semiring, and construct a quantum algorithm computing the product
of two n x n Boolean matrices that outperforms the best known classical
algorithms for sparse matrices. For instance, if the input matrices have
O(n^{1.686...}) non-zero entries, then our algorithm has time complexity
O(n^{2.277}), while the best classical algorithm has complexity O(n^{2.373}).Comment: 19 page
Quantum Algorithms for Finding Constant-sized Sub-hypergraphs
We develop a general framework to construct quantum algorithms that detect if
a -uniform hypergraph given as input contains a sub-hypergraph isomorphic to
a prespecified constant-sized hypergraph. This framework is based on the
concept of nested quantum walks recently proposed by Jeffery, Kothari and
Magniez [SODA'13], and extends the methodology designed by Lee, Magniez and
Santha [SODA'13] for similar problems over graphs. As applications, we obtain a
quantum algorithm for finding a -clique in a -uniform hypergraph on
vertices with query complexity , and a quantum algorithm for
determining if a ternary operator over a set of size is associative with
query complexity .Comment: 18 pages; v2: changed title, added more backgrounds to the
introduction, added another applicatio
Quantum and approximation algorithms for maximum witnesses of Boolean matrix products
The problem of finding maximum (or minimum) witnesses of the Boolean product
of two Boolean matrices (MW for short) has a number of important applications,
in particular the all-pairs lowest common ancestor (LCA) problem in directed
acyclic graphs (dags). The best known upper time-bound on the MW problem for
n\times n Boolean matrices of the form O(n^{2.575}) has not been substantially
improved since 2006. In order to obtain faster algorithms for this problem, we
study quantum algorithms for MW and approximation algorithms for MW (in the
standard computational model). Some of our quantum algorithms are input or
output sensitive. Our fastest quantum algorithm for the MW problem, and
consequently for the related problems, runs in time
\tilde{O}(n^{2+\lambda/2})=\tilde{O}(n^{2.434}), where \lambda satisfies the
equation \omega(1, \lambda, 1) = 1 + 1.5 \, \lambda and \omega(1, \lambda, 1)
is the exponent of the multiplication of an n \times n^{\lambda}$ matrix by an
n^{\lambda} \times n matrix. Next, we consider a relaxed version of the MW
problem (in the standard model) asking for reporting a witness of bounded rank
(the maximum witness has rank 1) for each non-zero entry of the matrix product.
First, by adapting the fastest known algorithm for maximum witnesses, we obtain
an algorithm for the relaxed problem that reports for each non-zero entry of
the product matrix a witness of rank at most \ell in time
\tilde{O}((n/\ell)n^{\omega(1,\log_n \ell,1)}). Then, by reducing the relaxed
problem to the so called k-witness problem, we provide an algorithm that
reports for each non-zero entry C[i,j] of the product matrix C a witness of
rank O(\lceil W_C(i,j)/k\rceil ), where W_C(i,j) is the number of witnesses for
C[i,j], with high probability. The algorithm runs in
\tilde{O}(n^{\omega}k^{0.4653} +n^2k) time, where \omega=\omega(1,1,1).Comment: 14 pages, 3 figure
Combining All Pairs Shortest Paths and All Pairs Bottleneck Paths Problems
We introduce a new problem that combines the well known All Pairs Shortest
Paths (APSP) problem and the All Pairs Bottleneck Paths (APBP) problem to
compute the shortest paths for all pairs of vertices for all possible flow
amounts. We call this new problem the All Pairs Shortest Paths for All Flows
(APSP-AF) problem. We firstly solve the APSP-AF problem on directed graphs with
unit edge costs and real edge capacities in
time,
where is the number of vertices, is the number of distinct edge
capacities (flow amounts) and is the time taken
to multiply two -by- matrices over a ring. Secondly we extend the problem
to graphs with positive integer edge costs and present an algorithm with
worst case time complexity, where is
the upper bound on edge costs
sub-cubic
© 2019 Society for Industrial and Applied Mathematics It is a major open problem whether the (min, +)-product of two n × n matrices has a truly subcubic (i.e., O(n3−ε) for ε > 0) time algorithm; in particular, since it is equivalent to the famous all-pairs-shortest-paths problem (APSP) in n-vertex graphs. Some restrictions of the (min, +)-product to special types of matrices are known to admit truly subcubic algorithms, each giving rise to a special case of APSP that can be solved faster. In this paper we consider a new, different, and powerful restriction in which all matrix entries are integers and one matrix can be arbitrary, as long as the other matrix has “bounded differences” in either its columns or rows, i.e., any two consecutive entries differ by only a small amount. We obtain the first truly subcubic algorithm for this bounded-difference (min, +)-product (answering an open problem of Chan and Lewenstein). Our new algorithm, combined with a strengthening of an approach of Valiant for solving context-free grammar parsing with matrix multiplication, yields the first truly subcubic algorithms for the following problems: language edit distance (a major problem in the parsing community), RNA folding (a major problem in bioinformatics), and optimum stack generation (answering an open problem of Tarjan)