71 research outputs found

    Direct observation of split-mode exciton-polaritons in a single MoS2_2 nanotube

    Full text link
    A single nanotube synthesized from a transition metal dichalcogenide (TMDC) exhibits strong exciton resonances and, in addition, can support optical whispering gallery modes. This combination is promising for observing exciton-polaritons without an external cavity. However, traditional energy-momentum-resolved detection methods are unsuitable for this tiny object. Instead, we propose to use split optical modes in a twisted nanotube with the flattened cross-section, where a gradually decreasing gap between the opposite walls leads to a change in mode energy, similar to the effect of the barrier width on the eigenenergies in the double-well potential. Using micro-reflectance spectroscopy, we investigated the rich pattern of polariton branches in single MoS2_2 tubes with both variable and constant gaps. Observed Rabi splitting in the 40 - 60 meV range is comparable to that for a MoS2_2 monolayer in a microcavity. Our results, based on the polariton dispersion measurements and polariton dynamics analysis, present a single TMDC nanotube as a perfect polaritonic structure for nanophotonics

    Twisted Nanotubes of Transition Metal Dichalcogenides with Split Optical Modes for Tunable Radiated Light Resonators

    Full text link
    Synthesized micro- and nanotubes composed of transition metal dichalcogenides (TMDCs) such as MoS2_2 are promising for many applications in nanophotonics, because they combine the abilities to emit strong exciton luminescence and to act as whispering gallery microcavities even at room temperature. In addition to tubes in the form of hollow cylinders, there is an insufficiently-studied class of twisted tubes, the flattened cross section of which rotates along the tube axis. As shown by theoretical analysis, in such nanotubes the interaction of electromagnetic waves excited at opposite sides of the cross section can cause splitting of the whispering gallery modes. By studying micro-photoluminescence spectra measured along individual MoS2_2 tubes, it has been established that the splitting value, which controls the energies of the split modes, depends exponentially on the aspect ratio of the cross section, which varies in "breathing" tubes, while the relative intensity of the modes in a pair is determined by the angle of rotation of the cross section. These results open up the possibility of creating multifunctional tubular TMDC nanodevices that provide resonant amplification of self-emitting light at adjustable frequencies

    Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition

    Get PDF
    About half of all cancers have somatic integrations of retrotransposons. Here, to characterize their role in oncogenesis, we analyzed the patterns and mechanisms of somatic retrotransposition in 2,954 cancer genomes from 38 histological cancer subtypes within the framework of the Pan-Cancer Analysis of Whole Genomes (PCAWG) project. We identified 19,166 somatically acquired retrotransposition events, which affected 35% of samples and spanned a range of event types. Long interspersed nuclear element (LINE-1; L1 hereafter) insertions emerged as the first most frequent type of somatic structural variation in esophageal adenocarcinoma, and the second most frequent in head-and-neck and colorectal cancers. Aberrant L1 integrations can delete megabase-scale regions of a chromosome, which sometimes leads to the removal of tumor-suppressor genes, and can induce complex translocations and large-scale duplications. Somatic retrotranspositions can also initiate breakage–fusion–bridge cycles, leading to high-level amplification of oncogenes. These observations illuminate a relevant role of L1 retrotransposition in remodeling the cancer genome, with potential implications for the development of human tumors
    • …
    corecore