2,403 research outputs found
Quality engineering of a traction alternator by robust design
Robust design is an engineering methodology for improving productivity during research and development so that high-quality products can be developed and produced quickly and at low cost. A large electrical company was developing traction alternators for a diesel electrical engine. Customer requirement was to obtain very high efficiency which, in turn, was influenced by several design parameters. The usual approach of the 'design-build-test' cycle was considered time-consuming and costly; it used to take anywhere from 4 months to 1 year before finalizing the product design parameters as it involved physical assembly and also testing. Instead, the authors used Taguchi's parameter design approach. This approach took about 8 weeks to arrive at optimum design parameter values; clearly demonstrating the cutting edge of this methodology over the traditional design-build-test approach. The prototype built and tested accordingly gave satisfactory overall performance, meeting and even exceeding customer requirements
Unidirectional terahertz light absorption in the pyroelectric ferrimagnet CaBaCo4O7
Spin excitations were studied by absorption spectroscopy in CaBaCo4O7 which
is a type-I multiferroic compound with the largest magnetic-order induced
ferroelectric polarization ({\Delta}P=17mC/m2) reported, so far. We observed
two optical magnon branches: a solely electric dipole allowed one and a mixed
magnetoelectric resonance. The entangled magnetization and polarization
dynamics of the magnetoelectric resonance gives rise to unidirectional light
absorption, i.e. that magnon mode absorbs the electromagnetic radiation for one
propagation direction but not for the opposite direction. Our systematic study
of the magnetic field and temperature dependence of magnon modes provides
information about the energies and symmetries of spin excitations, which is
required to develop a microscopic spin model of CaBaCo4O7.Comment: 5 pages, 4 figure
Magnetic structure and orbital ordering in BaCoO3 from first-principles calculations
Ab initio calculations using the APW+lo method as implemented in the WIEN2k
code have been used to describe the electronic structure of the
quasi-one-dimensional system BaCoO3. Both, GGA and LDA+U approximations were
employed to study different orbital and magnetic orderings. GGA predicts a
metallic ground state whereas LDA+U calculations yield an insulating and
ferromagnetic ground state (in a low-spin state) with an alternating orbital
ordering along the Co-Co chains, consistent with the available experimental
data.Comment: 8 pages, 9 figure
Magneto-optics induced by the spin chirality in itinerant ferromagnet NdMoO
It is demonstrated both theoretically and experimentally that the spin
chirality associated with a noncoplanar spin configuration produces a
magneto-optical effect. Numerical study of the two-band Hubbard model on a
triangle cluster shows that the optical Hall conductivity
is proportional to the spin chirality. The detailed comparative experiments on
pyrochlore-type molybdates MoO with Nd (Ising-like moments)
and Gd (Heisenberg-like ones) clearly distinguishes the two mechanisms,
i.e., spin chirality and spin-orbit interactions. It is concluded that for
=Nd, is dominated by the spin chirality for the dc
() and the incoherent intraband optical transitions between
Mo atoms.Comment: 4 pages, 5 figures. submitted to Phys. Rev.
Microcanonical Foundation for Systems with Power-Law Distributions
Starting from microcanonical basis with the principle of equal a priori
probability, it is found that, besides ordinary Boltzmann-Gibbs theory with the
exponential distribution, a theory describing systems with power-law
distributions can also be derived.Comment: 9 page
Phonons and Magnetic Excitations in Mott-Insulator LaTiO
The polarized Raman spectra of stoichiometric LaTiO (T K) were
measured between 6 and 300 K. In contrast to earlier report on half-metallic
LaTiO, neither strong background scattering, nor Fano shape of the
Raman lines was observed. The high frequency phonon line at 655 cm
exhibits anomalous softening below T: a signature for structural
rearrangement. The assignment of the Raman lines was done by comparison to the
calculations of lattice dynamics and the nature of structural changes upon
magnetic ordering are discussed. The broad Raman band, which appears in the
antiferromagnetic phase, is assigned to two-magnon scattering. The estimated
superexchange constant meV is in excellent agreement with the
result of neutron scattering studies.Comment: 4 pages, 5 figure
Coefficient of restitution for elastic disks
We calculate the coefficient of restitution, , starting from a
microscopic model of elastic disks. The theory is shown to agree with the
approach of Hertz in the quasistatic limit, but predicts inelastic collisions
for finite relative velocities of two approaching disks. The velocity
dependence of is calculated numerically for a wide range of
velocities. The coefficient of restitution furthermore depends on the elastic
constants of the material via Poisson's number. The elastic vibrations absorb
kinetic energy more effectively for materials with low values of the shear
modulus.Comment: 25 pages, 12 Postscript figures, LaTex2
Permanent current from non-commutative spin algebra
We show that a spontaneous electric current is induced in a nano-scale
conducting ring just by putting three ferromagnets. The current is a direct
consequence of the non-commutativity of the spin algebra, and is proportional
to the non-coplanarity (chirality) of the magnetization vectors. The
spontaneous current gives a natural explanation to the chirality-driven
anomalous Hall effect.Comment: 7 pages, 4 figures on separate pag
- …