2,379 research outputs found

    Investigation of the Domain Wall Fermion Approach to Chiral Gauge Theories on the Lattice

    Full text link
    We investigate a recent proposal to construct chiral gauge theories on the lattice using domain wall fermions. We restrict ourselves to the finite volume case, in which two domain walls are present, with modes of opposite chirality on each of them. We couple the chiral fermions on only one of the domain walls to a gauge field. In order to preserve gauge invariance, we have to add a scalar field, which gives rise to additional light mirror fermion and scalar modes. We argue that in an anomaly free model these extra modes would decouple if our model possesses a so-called strong coupling symmetric phase. However, our numerical results indicate that such a phase most probably does not exist. ---- Note: 9 Postscript figures are appended as uuencoded compressed tar file.Comment: 27p. Latex; UCSD/PTH 93-28, Wash. U. HEP/93-6

    Phase Coexistence of a Stockmayer Fluid in an Applied Field

    Full text link
    We examine two aspects of Stockmayer fluids which consists of point dipoles that additionally interact via an attractive Lennard-Jones potential. We perform Monte Carlo simulations to examine the effect of an applied field on the liquid-gas phase coexistence and show that a magnetic fluid phase does exist in the absence of an applied field. As part of the search for the magnetic fluid phase, we perform Gibbs ensemble simulations to determine phase coexistence curves at large dipole moments, ÎĽ\mu. The critical temperature is found to depend linearly on ÎĽ2\mu^2 for intermediate values of ÎĽ\mu beyond the initial nonlinear behavior near ÎĽ=0\mu=0 and less than the ÎĽ\mu where no liquid-gas phase coexistence has been found. For phase coexistence in an applied field, the critical temperatures as a function of the applied field for two different ÎĽ\mu are mapped onto a single curve. The critical densities hardly change as a function of applied field. We also verify that in an applied field the liquid droplets within the two phase coexistence region become elongated in the direction of the field.Comment: 23 pages, ReVTeX, 7 figure

    SU(N) chiral gauge theories on the lattice

    Full text link
    We extend the construction of lattice chiral gauge theories based on non-perturbative gauge fixing to the non-abelian case. A key ingredient is that fermion doublers can be avoided at a novel type of critical point which is only accessible through gauge fixing, as we have shown before in the abelian case. The new ingredient allowing us to deal with the non-abelian case as well is the use of equivariant gauge fixing, which handles Gribov copies correctly, and avoids Neuberger's no-go theorem. We use this method in order to gauge fix the non-abelian group (which we will take to be SU(N)) down to its maximal abelian subgroup. Obtaining an undoubled, chiral fermion content requires us to gauge-fix also the remaining abelian gauge symmetry. This modifies the equivariant BRST identities, but their use in proving unitarity remains intact, as we show in perturbation theory. On the lattice, equivariant BRST symmetry as well as the abelian gauge invariance are broken, and a judiciously chosen irrelevant term must be added to the lattice gauge-fixing action in order to have access to the desired critical point in the phase diagram. We argue that gauge invariance is restored in the continuum limit by adjusting a finite number of counter terms. We emphasize that weak-coupling perturbation theory applies at the critical point which defines the continuum limit of our lattice chiral gauge theory.Comment: 39 pages, 3 figures, A number of clarifications adde

    Spontaneous symmetry breaking in strong-coupling lattice QCD at high density

    Full text link
    We determine the patterns of spontaneous symmetry breaking in strong-coupling lattice QCD in a fixed background baryon density. We employ a next-nearest-neighbor fermion formulation that possesses the SU(N_f)xSU(N_f) chiral symmetry of the continuum theory. We find that the global symmetry of the ground state varies with N_f and with the background baryon density. In all cases the condensate breaks the discrete rotational symmetry of the lattice as well as part of the chiral symmetry group.Comment: 10 pages, RevTeX 4; added discussion of accidental degeneracy of vacuum after Eq. (35

    Phase structure of the Higgs-Yukawa systems with chirally invariant lattice fermion actions

    Full text link
    We develop analytical technique for examining phase structure of Z2Z_2, U(1)U(1), and SU(2)SU(2) lattice Higgs-Yukawa systems with radially frozen Higgs fields and chirally invariant lattice fermion actions. The method is based on variational mean field approximation. We analyse phase diagrams of such systems with different forms of lattice fermion actions and demonstrate that it crucially depends both on the symmetry group and on the form of the action. We discuss location in the diagrams of possible non-trivial fixed points relevant to continuum physics, and argue that the candidates can exist only in Z2Z_2 system with SLAC action and U(1)U(1) systems with naive and SLAC actions. [Note: By a product, missing term in Eq. (3.5) of hep-lat/9309010 is reconstructed, that, however, affects only the result of Sect. 4.3 (Fig. 3) of that reference (cf. Fig. 2(c) of this paper).]Comment: KEK-TH-390, KYUSHU-HET-17, 34 pages (harvmac) including 17 figures (appended in postscript format with uuencoded tar file).(PostScript Files are fixed.

    Hamiltonian domain wall fermions at strong coupling

    Get PDF
    We apply strong-coupling perturbation theory to gauge theories containing domain-wall fermions in Shamir's surface version. We construct the effective Hamiltonian for the color-singlet degrees of freedom that constitute the low-lying spectrum at strong coupling. We show that the effective theory is identical to that derived from naive, doubled fermions with a mass term, and hence that domain-wall fermions at strong coupling suffer both doubling and explicit breaking of chiral symmetry. Since we employ a continuous fifth dimension whose extent tends to infinity, our result applies to overlap fermions as well.Comment: Revtex, 21 pp. Some changes in Introduction, dealing with consistency with previous wor

    Low-lying fermion modes, topology and light hadrons in quenched QCD

    Get PDF
    We explore the properties of low lying eigenmodes of fermions in the quenched approximation of lattice QCD. The fermion action is a recently proposed overlap action and has exact chiral symmetry. We find that chiral zero-eigenvalue modes are localized in space and their positions correlate strongly with the locations (as defined through the density of pure gauge observables) of instantons of the appropriate charge. Nonchiral modes are also localized with peaks which are strongly correlated with the positions of both charges of instantons. These correlations slowly die away as the fermion eigenvalue rises. Correlators made of quark propagators restricted to these modes closely reproduce ordinary hadron correlators at small quark mass in many channels. Our results are in qualitative agreement with the expectations of instanton liquid models.Comment: 21 pages, Revtex, 21 postscript figures. COLO-HEP-45

    Spectrum of the U(1) staggered Dirac operator in four dimensions

    Get PDF
    We compare the low-lying spectrum of the staggered Dirac operator in the confining phase of compact U(1) gauge theory on the lattice to predictions of chiral random matrix theory. The small eigenvalues contribute to the chiral condensate similar as for the SU(2) and SU(3) gauge groups. Agreement with the chiral unitary ensemble is observed below the Thouless energy, which is extracted from the data and found to scale with the lattice size according to theoretical predictions.Comment: 5 pages, 3 figure

    Domain wall fermion zero modes on classical topological backgrounds

    Full text link
    The domain wall approach to lattice fermions employs an additional dimension, in which gauge fields are merely replicated, to separate the chiral components of a Dirac fermion. It is known that in the limit of infinite separation in this new dimension, domain wall fermions have exact zero modes, even for gauge fields which are not smooth. We explore the effects of finite extent in the fifth dimension on the zero modes for both smooth and non-smooth topological configurations and find that a fifth dimension of around ten sites is sufficient to clearly show zero mode effects. This small value for the extent of the fifth dimension indicates the practical utility of this technique for numerical simulations of QCD.Comment: Updated fig. 3-7, small changes in sect. 3, added fig. 8, added more reference

    Abdominal Compartment Syndrome and Intra-abdominal Ischemia in Patients with Severe Acute Pancreatitis

    Get PDF
    Severe acute pancreatitis may be complicated by intra-abdominal hypertension (IAH), abdominal compartment syndrome (ACS), and intestinal ischemia. The aim of this retrospective study is to describe the incidence, treatment, and outcome of patients with severe acute pancreatitis and ACS, in particular the occurrence of intestinal ischemia. The medical records of all patients admitted with severe acute pancreatitis admitted to the ICU of a tertiary referral center were reviewed. The criteria proposed by the World Society of the Abdominal Compartment Syndrome (WSACS) were used to determine whether patients had IAH or ACS. Fifty-nine patients with severe acute pancreatitis were identified. Intra-abdominal pressure (IAP) measurements were performed in 29 patients (49.2 %). IAH was present in all patients (29/29). ACS developed in 13/29 (44.8 %) patients. Ten patients with ACS underwent decompressive laparotomy. A large proportion of patients with ACS had intra-abdominal ischemia upon laparotomy: 8/13 (61.5 %). Mortality was high in both the ACS group and the IAH group. This study confirms that ACS is common in severe acute pancreatitis. Intra-abdominal ischemia occurs in a large proportion of patients with ACS. Swift surgical intervention may be indicated when conservative measures fail in patients with ACS. National and international guidelines need to be updated so that routine IAP measurements become standard of care for patients with severe acute pancreatitis in the ICU
    • …
    corecore