779 research outputs found

    Counterfactual Formulation of Patient-Specific Root Causes of Disease

    Full text link
    Root causes of disease intuitively correspond to root vertices that increase the likelihood of a diagnosis. This description of a root cause nevertheless lacks the rigorous mathematical formulation needed for the development of computer algorithms designed to automatically detect root causes from data. Prior work defined patient-specific root causes of disease using an interventionalist account that only climbs to the second rung of Pearl's Ladder of Causation. In this theoretical piece, we climb to the third rung by proposing a counterfactual definition matching clinical intuition based on fixed factual data alone. We then show how to assign a root causal contribution score to each variable using Shapley values from explainable artificial intelligence. The proposed counterfactual formulation of patient-specific root causes of disease accounts for noisy labels, adapts to disease prevalence and admits fast computation without the need for counterfactual simulation

    Identifying Patient-Specific Root Causes with the Heteroscedastic Noise Model

    Full text link
    Complex diseases are caused by a multitude of factors that may differ between patients even within the same diagnostic category. A few underlying root causes may nevertheless initiate the development of disease within each patient. We therefore focus on identifying patient-specific root causes of disease, which we equate to the sample-specific predictivity of the exogenous error terms in a structural equation model. We generalize from the linear setting to the heteroscedastic noise model where Y=m(X)+εσ(X)Y = m(X) + \varepsilon\sigma(X) with non-linear functions m(X)m(X) and σ(X)\sigma(X) representing the conditional mean and mean absolute deviation, respectively. This model preserves identifiability but introduces non-trivial challenges that require a customized algorithm called Generalized Root Causal Inference (GRCI) to extract the error terms correctly. GRCI recovers patient-specific root causes more accurately than existing alternatives

    Sample-Specific Root Causal Inference with Latent Variables

    Full text link
    Root causal analysis seeks to identify the set of initial perturbations that induce an unwanted outcome. In prior work, we defined sample-specific root causes of disease using exogenous error terms that predict a diagnosis in a structural equation model. We rigorously quantified predictivity using Shapley values. However, the associated algorithms for inferring root causes assume no latent confounding. We relax this assumption by permitting confounding among the predictors. We then introduce a corresponding procedure called Extract Errors with Latents (EEL) for recovering the error terms up to contamination by vertices on certain paths under the linear non-Gaussian acyclic model. EEL also identifies the smallest sets of dependent errors for fast computation of the Shapley values. The algorithm bypasses the hard problem of estimating the underlying causal graph in both cases. Experiments highlight the superior accuracy and robustness of EEL relative to its predecessors
    • …
    corecore