734 research outputs found

    Double beta decay versus cosmology: Majorana CP phases and nuclear matrix elements

    Full text link
    We discuss the relation between the absolute neutrino mass scale, the effective mass measured in neutrinoless double beta decay, and the Majorana CP phases. Emphasis is placed on estimating the upper bound on the nuclear matrix element entering calculations of the double beta decay half life. Consequently, one of the Majorana CP phases can be constrained when combining the claimed evidence for neutrinoless double beta decay with the neutrino mass bound from cosmology.Comment: 11 pages, 3 figure

    Conditions for detecting CP violation via neutrinoless double beta decay

    Full text link
    Neutrinoless double beta decay data together with information on the absolute neutrino masses obtained from the future KATRIN experiment and/or astrophysical measurements give a chance to find CP violation in the lepton sector with Majorana neutrinos. We derive and discuss necessary conditions which make discovery of such CP violation possible for the future neutrino oscillation and mass measurements data.Comment: 15 pages, 4 figures, RevTe

    Results of a search for 2ÎČ\beta-decay of 136^{136}Xe with high-pressure copper proportional counters in Baksan Neutrino Observatory

    Full text link
    The experiment for the 2ÎČ\beta-decay of 136^{136}Xe search with two high-pressure copper proportional counters has been held in Baksan neutrino observatory. The search for the process is based on comparison of spectra measured with natural and enriched xenon. No evidence has been found for 2ÎČ\beta(2Îœ\nu)- and 2ÎČ\beta(0Îœ\nu)-decay. The decay half lifetime limit based on data measured during 8000 h is T1/2_{1/2}≄8.5⋅1021\geq8.5\cdot10^{21}yr for 2Îœ\nu-mode and T1/2_{1/2}≄3.1⋅1023\geq3.1\cdot10^{23}yr for 0Îœ\nu-mode (90%C.L.).Comment: 9 pages, 8 figures; talk at the NANP'05 Conference; submitted to Phys. At. Nuc

    Direct neutron capture of 48Ca at kT = 52 keV

    Full text link
    The neutron capture cross section of 48Ca was measured relative to the known gold cross section at kT = 52 keV using the fast cyclic activation technique. The experiment was performed at the Van-de-Graaff accelerator, Universitaet Tuebingen. The new experimental result is in good agreement with a calculation using the direct capture model. The 1/v behaviour of the capture cross section at thermonuclear energies is confirmed, and the adopted reaction rate which is based on several previous experimental investigations remains unchanged.Comment: 9 pages (uses Revtex), 2 postscript figures, accepted for publication as Brief Report in Phys. Rev.

    Properties of 8^{8}Be and 12^{12}C deduced from the folding--potential model

    Full text link
    The α\alpha--α\alpha differential cross sections are analyzed in the optical model using a double--folded potential. With the knowledge of this potential bound and resonance--state properties of α\alpha--cluster states in 8^{8}Be and 12^{12}C as well as astrophysical S--factors of 4^{4}He(α\alpha,Îł\gamma)8^{8}Be and 8^{8}Be(α\alpha,Îł\gamma)12^{12}C are calculated. Γγ\Gamma_{\gamma}--widths and B(E2)--values are deduced.Comment: 2 pages LaTeX, 2 figures can be obtained from the author

    Theoretical Aspects of Science with Radioactive Nuclear Beams

    Get PDF
    Physics of radioactive nuclear beams is one of the main frontiers of nuclear science today. Experimentally, thanks to technological developments, we are on the verge of invading the territory of extreme N/Z ratios in an unprecedented way. Theoretically, nuclear exotica represent a formidable challenge for the nuclear many-body theories and their power to predict nuclear properties in nuclear terra incognita. It is important to remember that the lesson learned by going to the limits of the nuclear binding is also important for normal nuclei from the neighborhood of the beta stability valley. And, of course, radioactive nuclei are crucial astrophysically; they pave the highway along which the nuclear material is transported up in the proton and neutron numbers during the complicated synthesis process in stars.Comment: 26 ReVTeX pages, 11 Postscript figures, uses epsf.sty, to be published in: Theme Issue on Science with Beams of Radioactive Nuclei, Philosophical Transactions, ed. by W. Gelletl

    Comparison of low--energy resonances in 15N(alpha,gamma)19F and 15O(alpha,gamma)19Ne and related uncertainties

    Full text link
    A disagreement between two determinations of Gamma_alpha of the astro- physically relevant level at E_x=4.378 MeV in 19F has been stated in two recent papers by Wilmes et al. and de Oliveira et al. In this work the uncertainties of both papers are discussed in detail, and we adopt the value Gamma_alpha=(1.5^{+1.5}_{-0.8})10^-9eV for the 4.378 MeV state. In addition, the validity and the uncertainties of the usual approximations for mirror nuclei Gamma_gamma(19F) approx Gamma_gamma(19Ne), theta^2_alpha(19F) approx theta^2_alpha(19Ne) are discussed, together with the resulting uncertainties on the resonance strengths in 19Ne and on the 15O(alpha,gamma)19Ne rate.Comment: 9 pages, Latex, To appear in Phys. Rev.

    Limits on the Majorana neutrino mass in the 0.1 eV range

    Get PDF
    The Heidelberg-Moscow experiment gives the most stringent limit on the Majorana neutrino mass. After 24 kg yr of data with pulse shape measurements, we set a lower limit on the half-life of the neutrinoless double beta decay in 76Ge of T_1/2 > 5.7 * 10^{25} yr at 90% C.L., thus excluding an effective Majorana neutrino mass greater than 0.2 eV. This allows to set strong constraints on degenerate neutrino mass models.Comment: 6 pages (latex) including 3 postscript figures and 2 table

    Shell Model Study of the Double Beta Decays of 76^{76}Ge, 82^{82}Se and 136^{136}Xe

    Get PDF
    The lifetimes for the double beta decays of 76^{76}Ge, 82^{82}Se and 136^{136}Xe are calculated using very large shell model spaces. The two neutrino matrix elements obtained are in good agreement with the present experimental data. For <1<1 eV we predict the following upper bounds to the half-lives for the neutrinoless mode: T1/2(0Îœ)(Ge)>1.85 1025yr.T^{(0\nu)}_{1/2}(Ge) > 1.85\,10^{25} yr., T1/2(0Îœ)(Se)>2.36 1024yr.T^{(0\nu)}_{1/2}(Se) > 2.36\,10^{24} yr. and T1/2(0Îœ)(Xe)>1.21 1025yrT^{(0\nu)}_{1/2}(Xe) > 1.21\,10^{25} yr. These results are the first from a new generation of Shell Model calculations reaching O(108^{8}) dimensions
    • 

    corecore