715 research outputs found
An Epitome of Multi Secret Sharing Schemes for General Access Structure
Secret sharing schemes are widely used now a days in various applications,
which need more security, trust and reliability. In secret sharing scheme, the
secret is divided among the participants and only authorized set of
participants can recover the secret by combining their shares. The authorized
set of participants are called access structure of the scheme. In Multi-Secret
Sharing Scheme (MSSS), k different secrets are distributed among the
participants, each one according to an access structure. Multi-secret sharing
schemes have been studied extensively by the cryptographic community. Number of
schemes are proposed for the threshold multi-secret sharing and multi-secret
sharing according to generalized access structure with various features. In
this survey we explore the important constructions of multi-secret sharing for
the generalized access structure with their merits and demerits. The features
like whether shares can be reused, participants can be enrolled or dis-enrolled
efficiently, whether shares have to modified in the renewal phase etc., are
considered for the evaluation
What can GLAST say about the origin of cosmic rays in other galaxies ?
Gamma rays in the band from 20 MeV to 300 GeV, used in combination with data
from radio and X-ray bands, provide a powerful tool for studying the origin of
cosmic rays in our sister galaxies Andromeda and the Magellanic Clouds.
Gamma-ray Large Area Space Telescope (GLAST) will spatially resolve these
galaxies and measure the spectrum and intensity of diffuse gamma radiation from
the collisions of cosmic rays with gas and dust in them. Observations of
Andromeda will give an external perspective on a spiral galaxy like the Milky
Way. Observations of the Magellanic Clouds will permit a study of cosmic rays
in dwarf irregular galaxies, where the confinement is certainly different and
the massive star formation rate is much greater.Comment: 4 pages including 6 figures; to appear in Proc. ACE-2000 Symp. "The
Acceleration and Transport of Energetic Particles Observed in the
Heliosphere" (Jan. 5-8, 2000, Indian Wells, CA), AIP Conf. Proc. More details
can be found at the LHEA GLAST page at
http://lhea-glast.gsfc.nasa.gov/pub/science/index.htm
Modeling charge transport in Swept Charge Devices for X-ray spectroscopy
We present the formulation of an analytical model which simulates charge
transport in Swept Charge Devices (SCDs) to understand the nature of the
spectral redistribution function (SRF). We attempt to construct the
energy-dependent and position dependent SRF by modeling the photon interaction,
charge cloud generation and various loss mechanisms viz., recombination,
partial charge collection and split events. The model will help in optimizing
event selection, maximize event recovery and improve spectral modeling for
Chandrayaan-2 (slated for launch in 2014). A proto-type physical model is
developed and the algorithm along with its results are discussed in this paper.Comment: 9 pages, 7 figures, Proc. SPIE 8453, High Energy, Optical, and
Infrared Detectors for Astronomy
- …