175 research outputs found

    Determination of Odor Detection Threshold in the Göttingen Minipig

    Get PDF
    The aim of the study was to examine the ability of Göttingen minipigs to acquire an olfaction-based operant conditioning task and to determine the detection threshold for ethyl acetate and ethanol. We used an automated olfactometer developed for rodents to train and test 14 pigs. Odor sampling and reliable responding were obtained after three to fifteen 160-trial sessions. Successful transfer of the task from ethyl acetate to ethanol was achieved in 1–4 sessions. Detection threshold for ethyl acetate varied between 10−2% and 10−6% v/v and for ethanol between 0.1% and 5 × 10−6% v/v. The results provide evidence that minipigs can successfully acquire 2-odorant discrimination using a food-rewarded instrumental conditioning paradigm for testing olfactory function. This olfactory discrimination paradigm provides reliable measures of olfactory sensitivity and thereby enables detection of changes in olfaction in a porcine model of Alzheimer's disease currently being developed

    Why I tense up when you watch me: inferior parietal cortex mediates an audience’s influence on motor performance

    Get PDF
    The presence of an evaluative audience can alter skilled motor performance through changes in force output. To investigate how this is mediated within the brain, we emulated real-time social monitoring of participants’ performance of a fine grip task during functional magnetic resonance neuroimaging. We observed an increase in force output during social evaluation that was accompanied by focal reductions in activity within bilateral inferior parietal cortex. Moreover, deactivation of the left inferior parietal cortex predicted both inter- and intra-individual differences in socially-induced change in grip force. Social evaluation also enhanced activation within the posterior superior temporal sulcus, which conveys visual information about others’ actions to the inferior parietal cortex. Interestingly, functional connectivity between these two regions was attenuated by social evaluation. Our data suggest that social evaluation can vary force output through the altered engagement of inferior parietal cortex; a region implicated in sensorimotor integration necessary for object manipulation, and a component of the action-observation network which integrates and facilitates performance of observed actions. Social-evaluative situations may induce high-level representational incoherence between one’s own intentioned action and the perceived intention of others which, by uncoupling the dynamics of sensorimotor facilitation, could ultimately perturbe motor output

    Under pressure: Response urgency modulates striatal and insula activity during decision-making under risk

    Get PDF
    When deciding whether to bet in situations that involve potential monetary loss or gain (mixed gambles), a subjective sense of pressure can influence the evaluation of the expected utility associated with each choice option. Here, we explored how gambling decisions, their psychophysiological and neural counterparts are modulated by an induced sense of urgency to respond. Urgency influenced decision times and evoked heart rate responses, interacting with the expected value of each gamble. Using functional MRI, we observed that this interaction was associated with changes in the activity of the striatum, a critical region for both reward and choice selection, and within the insula, a region implicated as the substrate of affective feelings arising from interoceptive signals which influence motivational behavior. Our findings bridge current psychophysiological and neurobiological models of value representation and action-programming, identifying the striatum and insular cortex as the key substrates of decision-making under risk and urgency

    Rapid Encoding and Perception of Novel Odors in the Rat

    Get PDF
    To gain insight into which parameters of neural activity are important in shaping the perception of odors, we combined a behavioral measure of odor perception with optical imaging of odor representations at the level of receptor neuron input to the rat olfactory bulb. Instead of the typical test of an animal's ability to discriminate two familiar odorants by exhibiting an operant response, we used a spontaneously expressed response to a novel odorant—exploratory sniffing—as a measure of odor perception. This assay allowed us to measure the speed with which rats perform spontaneous odor discriminations. With this paradigm, rats discriminated and began responding to a novel odorant in as little as 140 ms. This time is comparable to that measured in earlier studies using operant behavioral readouts after extensive training. In a subset of these trials, we simultaneously imaged receptor neuron input to the dorsal olfactory bulb with near-millisecond temporal resolution as the animal sampled and then responded to the novel odorant. The imaging data revealed that the bulk of the discrimination time can be attributed to the peripheral events underlying odorant detection: receptor input arrives at the olfactory bulb 100–150 ms after inhalation begins, leaving only 50–100 ms for central processing and response initiation. In most trials, odor discrimination had occurred even before the initial barrage of receptor neuron firing had ceased and before spatial maps of activity across glomeruli had fully developed. These results suggest a coding strategy in which the earliest-activated glomeruli play a major role in the initial perception of odor quality, and place constraints on coding and processing schemes based on simple changes in spike rate

    Increased ventral striatal volume in college-aged binge drinkers

    Get PDF
    BACKGROUND Binge drinking is a serious public health issue associated with cognitive, physiological, and anatomical differences from healthy individuals. No studies, however, have reported subcortical grey matter differences in this population. To address this, we compared the grey matter volumes of college-age binge drinkers and healthy controls, focusing on the ventral striatum, hippocampus and amygdala. METHOD T1-weighted images of 19 binge drinkers and 19 healthy volunteers were analyzed using voxel-based morphometry. Structural data were also covaried with Alcohol Use Disorders Identification Test (AUDIT) scores. Cluster-extent threshold and small volume corrections were both used to analyze imaging data. RESULTS Binge drinkers had significantly larger ventral striatal grey matter volumes compared to controls. There were no between group differences in hippocampal or amygdalar volume. Ventral striatal, amygdalar, and hippocampal volumes were also negatively related to AUDIT scores across groups. CONCLUSIONS Our findings stand in contrast to the lower ventral striatal volume previously observed in more severe forms of alcohol use disorders, suggesting that college-age binge drinkers may represent a distinct population from those groups. These findings may instead represent early sequelae, compensatory effects of repeated binge and withdrawal, or an endophenotypic risk factor

    Biases in the Explore-Exploit Tradeoff in Addictions: The Role of Avoidance of Uncertainty.

    Get PDF
    We focus on exploratory decisions across disorders of compulsivity, a potential dimensional construct for the classification of mental disorders. Behaviors associated with the pathological use of alcohol or food, in alcohol use disorders (AUD) or binge-eating disorder (BED), suggest a disturbance in explore-exploit decision-making, whereby strategic exploratory decisions in an attempt to improve long-term outcomes may diminish in favor of more repetitive or exploitatory choices. We compare exploration vs exploitation across disorders of natural (obesity with and without BED) and drug rewards (AUD). We separately acquired resting state functional MRI data using a novel multi-echo planar imaging sequence and independent components analysis from healthy individuals to assess the neural correlates underlying exploration. Participants with AUD showed reduced exploratory behavior across gain and loss environments, leading to lower-yielding exploitatory choices. Obese subjects with and without BED did not differ from healthy volunteers but when compared with each other or to AUD subjects, BED had enhanced exploratory behaviors particularly in the loss domain. All subject groups had decreased exploration or greater uncertainty avoidance to losses compared with rewards. More exploratory decisions in the context of reward were associated with frontal polar and ventral striatal connectivity. For losses, exploration was associated with frontal polar and precuneus connectivity. We further implicate the relevance and dimensionality of constructs of compulsivity across disorders of both natural and drug rewards.The study was funded by the Wellcome Trust Fellowship grant for VV (093705/Z/10/Z) and Cambridge NIHR Biomedical Research Centre. VV and NAH are Wellcome Trust (WT) intermediate Clinical Fellows. LSM is in receipt of an MRC studentship. The BCNI is supported by a WT and MRC grant. MF is funded by NIMH and NSF grants and is consultant for Hoffman LaRoche pharmaceuticals. The remaining authors declare no competing financial interests.This is the final version of the article. It first appeared from NPG via http://dx.doi.org/10.1038/npp.2015.20

    Precisely timed oculomotor and parietal EEG activity in perceptual switching

    Get PDF
    Blinks and saccades cause transient interruptions of visual input. To investigate how such effects influence our perceptual state, we analyzed the time courses of blink and saccade rates in relation to perceptual switching in the Necker cube. Both time courses of blink and saccade rates showed peaks at different moments along the switching process. A peak in blinking rate appeared 1,000 ms prior to the switching responses. Blinks occurring around this peak were associated with subsequent switching to the preferred interpretation of the Necker cube. Saccade rates showed a peak 150 ms prior to the switching response. The direction of saccades around this peak was predictive of the perceived orientation of the Necker cube afterwards. Peak blinks were followed and peak saccades were preceded by transient parietal theta band activity indicating the changing of the perceptual interpretation. Precisely-timed blinks, therefore, can initiate perceptual switching, and precisely-timed saccades can facilitate an ongoing change of interpretation

    Coupled evolution of temperature and carbonate chemistry during the Paleocene–Eocene; new trace element records from the low latitude Indian Ocean

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordThe early Paleogene represents the most recent interval in Earth’s history characterized by global greenhouse warmth on multi-million year timescales, yet our understanding of long-term climate and carbon cycle evolution in the low latitudes, and in particular the Indian Ocean, remains very poorly constrained. Here we present the first long-term sub-eccentricity-resolution stable isotope (δ13 30 C and δ 18 O) and trace element (Mg/Ca and B/Ca) records spanning the late Paleocene–early Eocene (~58– 53 Ma) across a surface–deep hydrographic reconstruction of the northern Indian Ocean, resolving late Paleocene 405-kyr paced cyclicity and a portion of the PETM recovery. Our new records reveal a long-term warming of ~4–5°C at all depths in the water column, with absolute surface ocean temperatures and magnitudes of warming comparable to the low latitude Pacific. As a result of warming, we observe a long-term increase in δ 18 Osw of the mixed layer, implying an increase in net evaporation. We also observe a collapse in the temperature gradient between mixed layer- and thermocline-dwelling species from ~57–54 Ma, potentially due to either the development of a more homogeneous water column with a thicker mixed layer, or depth migration of the Morozovella in response to warming. Synchronous warming at both low and high latitudes, along with decreasing B/Ca ratios in planktic foraminifera indicating a decrease in ocean pH and/or increasing dissolved inorganic carbon, suggest that global climate was forced by rising atmospheric CO2 concentrations during this time.European Consortium for Ocean Research Drilling (ECORD)International Association of Sedimentologists (IAS)NSFNatural Environment Research Council (NERC

    Are women better mindreaders? Sex differences in neural correlates of mentalizing detected with functional MRI

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability to mentalize, i.e. develop a Theory of Mind (ToM), enables us to anticipate and build a model of the thoughts, emotions and intentions of others. It has long been hypothesised that women differ from men in their mentalizing abilities. In the present fMRI study we examined the impact of (1) gender (women vs. men) and (2) game partner (human vs. computer) on ToM associated neural activity in the medial prefrontal cortex. Groups of men (n = 12) and women (n = 12) interacted in an iterated classical prisoner's dilemma forced choice situation with alleged human and computer partners who were outside the scanner.</p> <p>Results</p> <p>Both the conditions of playing against putative human as well as computer partners led to activity increases in mPFC, ACC and rTPJ, constituting the classic ToM network. However, mPFC/ACC activity was more pronounced when participants believed they were playing against the alleged human partner. Differences in the medial frontal lobe activation related to the sex of the participants could be demonstrated for the human partner > computer partner contrast.</p> <p>Conclusion</p> <p>Our data demonstrate differences in medial prefrontal brain activation during a ToM task depending on both the gender of participants and the game partner.</p
    corecore