6 research outputs found

    Association between chronic liver and colon inflammation during the development of murine syngeneic graft-versus-host disease

    Get PDF
    The murine model of cyclosporine A (CsA)-induced syngeneic graft-versus-host disease (SGVHD) is a bone marrow (BM) transplantation model that develops chronic colon inflammation identical to other murine models of CD4+ T cell-mediated colitis. Interestingly, SGVHD animals develop chronic liver lesions that are similar to the early peribiliary inflammatory stages of clinical chronic liver disease, which is frequently associated with inflammatory bowel disease (IBD). Therefore, studies were initiated to investigate the chronic liver inflammation that develops in the SGVHD model. To induce SGVHD, mice were lethally irradiated, reconstituted with syngeneic BM, and treated with CsA. All of the SGVHD animals that developed colitis also develop chronic liver inflammation. Liver samples from control and SGVHD animals were monitored for tissue pathology, RNA for inflammatory mediators, and phenotypic analysis and in vitro reactivity of the inflammatory infiltrate. Diseased animals developed lesions of intrahepatic and extrahepatic bile ducts. Elevated levels of mRNA for molecules associated with chronic liver inflammation, including mucosal cellular adhesion molecule −1, the chemokines CCL25, CCL28, CCR9, and TH1- and TH17-associated cytokines were observed in livers of SGVHD mice. CD4+ T cells were localized to the peribiliary region of the livers of diseased animals, and an enhanced proliferative response of liver-associated mononuclear cells against colonic bacterial antigens was observed. The murine model of SGVHD colitis may be a valuable tool to study the entero-hepatic linkage between chronic colon inflammation and inflammatory liver disease

    Homeostasis and regulation of autoreactive B cells

    No full text

    The role of B-1 cells in inflammation

    No full text
    B-1 lymphocytes exhibit unique phenotypic, ontogenic, and functional characteristics that differ from the conventional B-2 cells. B-1 cells spontaneously secrete germline-like, repertoire skewed polyreactive natural antibody, which acts as a first line of defense by neutralizing a wide range of pathogens before launching of the adaptive immune response. Immunomodulatory molecules, such as interleukin-10 (IL-10), adenosine, granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-3, and IL-35 are also produced by B-1 cells in the presence or absence of stimulation, which regulate acute and chronic inflammatory diseases. Considerable progress has been made during the past three decades since the discovery of B-1 cells, which has not only improved our understanding of their phenotypic and ontogenic uniqueness but also their role in various inflammatory diseases including influenza, pneumonia, sepsis, atherosclerosis, inflammatory bowel disease (IBD), autoimmunity, obesity and diabetes mellitus. Recent identification of human B-1 cells widens the scope of this field, leading to novel innovations that can be implemented from bench to bedside. Among the vast number of studies on B-1 cells, we have carried out a literature review highlighting current trends in the study of B-1 cell involvement during inflammation, which may result in a paradigm shift towards sustainable therapeutics in various inflammatory diseases

    Toll-like receptors and B cells: functions and mechanisms

    No full text

    Emergence and significance of carbohydrate-specific antibodies

    No full text
    corecore