461 research outputs found

    Transient chaos and resonant phase mixing in violent relaxation

    Full text link
    This paper explores how orbits in a galactic potential can be impacted by large amplitude time-dependences of the form that one might associate with galaxy or halo formation or strong encounters between pairs of galaxies. A period of time-dependence with a strong, possibly damped, oscillatory component can give rise to large amounts of transient chaos, and it is argued that chaotic phase mixing associated with this transient chaos could play a major role in accounting for the speed and efficiency of violent relaxation. Analysis of simple toy models involving time-dependent perturbations of an integrable Plummer potential indicates that this chaos results from a broad, possibly generic, resonance between the frequencies of the orbits and harmonics thereof and the frequencies of the time-dependent perturbation. Numerical computations of orbits in potentials exhibiting damped oscillations suggest that, within a period of 10 dynamical times t_D or so, one could achieve simultaneously both `near-complete' chaotic phase mixing and a nearly time-independent, integrable end state.Comment: 11 pages and 12 figures: an extended version of the original manuscript, containing a modified title, one new figure, and approximately one page of additional text, to appear in Monthly Notices of the Royal Astronomical Societ

    Fluctuations Do Matter: Large Noise-Enhanced Halos in Charged-Particle Beams

    Full text link
    The formation of beam halos has customarily been described in terms of a particle-core model in which the space-charge field of the oscillating core drives particles to large amplitudes. This model involves parametric resonance and predicts a hard upper bound to the orbital amplitude of the halo particles. We show that the presence of colored noise due to space-charge fluctuations and/or machine imperfections can eject particles to much larger amplitudes than would be inferred from parametric resonance alone.Comment: 13 pages total, including 5 figure

    Thunderstorm nowcasting with deep learning: a multi-hazard data fusion model

    Full text link
    Predictions of thunderstorm-related hazards are needed in several sectors, including first responders, infrastructure management and aviation. To address this need, we present a deep learning model that can be adapted to different hazard types. The model can utilize multiple data sources; we use data from weather radar, lightning detection, satellite visible/infrared imagery, numerical weather prediction and digital elevation models. It can be trained to operate with any combination of these sources, such that predictions can still be provided if one or more of the sources become unavailable. We demonstrate the ability of the model to predict lightning, hail and heavy precipitation probabilistically on a 1 km resolution grid, with a time resolution of 5 min and lead times up to 60 min. Shapley values quantify the importance of the different data sources, showing that the weather radar products are the most important predictors for all three hazard types.Comment: 15 pages, 3 figures. Submitted to Geophysical Research Letter
    • …
    corecore