507 research outputs found

    The Screen representation of spin networks. Images of 6j symbols and semiclassical features

    Full text link
    This article presents and discusses in detail the results of extensive exact calculations of the most basic ingredients of spin networks, the Racah coefficients (or Wigner 6j symbols), exhibiting their salient features when considered as a function of two variables - a natural choice due to their origin as elements of a square orthogonal matrix - and illustrated by use of a projection on a square "screen" introduced recently. On these screens, shown are images which provide a systematic classification of features previously introduced to represent the caustic and ridge curves (which delimit the boundaries between oscillatory and evanescent behaviour according to the asymptotic analysis of semiclassical approaches). Particular relevance is given to the surprising role of the intriguing symmetries discovered long ago by Regge and recently revisited; from their use, together with other newly discovered properties and in conjunction with the traditional combinatorial ones, a picture emerges of the amplitudes and phases of these discrete wavefunctions, of interest in wide areas as building blocks of basic and applied quantum mechanics.Comment: 16 pages, 13 figures, presented at ICCSA 2013 13th International Conference on Computational Science and Applicatio

    Exact and asymptotic computations of elementary spin networks: classification of the quantum-classical boundaries

    Full text link
    Increasing interest is being dedicated in the last few years to the issues of exact computations and asymptotics of spin networks. The large-entries regimes (semiclassical limits) occur in many areas of physics and chemistry, and in particular in discretization algorithms of applied quantum mechanics. Here we extend recent work on the basic building block of spin networks, namely the Wigner 6j symbol or Racah coefficient, enlightening the insight gained by exploiting its self-dual properties and studying it as a function of two (discrete) variables. This arises from its original definition as an (orthogonal) angular momentum recoupling matrix. Progress also derives from recognizing its role in the foundation of the modern theory of classical orthogonal polynomials, as extended to include discrete variables. Features of the imaging of various regimes of these orthonormal matrices are made explicit by computational advances -based on traditional and new recurrence relations- which allow an interpretation of the observed behaviors in terms of an underlying Hamiltonian formulation as well. This paper provides a contribution to the understanding of the transition between two extreme modes of the 6j, corresponding to the nearly classical and the fully quantum regimes, by studying the boundary lines (caustics) in the plane of the two matrix labels. This analysis marks the evolution of the turning points of relevance for the semiclassical regimes and puts on stage an unexpected key role of the Regge symmetries of the 6j.Comment: 15 pages, 11 figures. Talk presented at ICCSA 2012 (12th International Conference on Computational Science and Applications, Salvador de Bahia (Brazil) June 18-21, 2012

    Quantum Zeno Effect Explains Magnetic-Sensitive Radical-Ion-Pair Reactions

    Full text link
    Chemical reactions involving radical-ion pairs are ubiquitous in biology, since not only are they at the basis of the photosynthetic reaction chain, but are also assumed to underlie the biochemical magnetic compass used by avian species for navigation. Recent experiments with magnetic-sensitive radical-ion pair reactions provided strong evidence for the radical-ion-pair magnetoreception mechanism, verifying the expected magnetic sensitivities and chemical product yield changes. It is here shown that the theoretical description of radical-ion-pair reactions used since the 70's cannot explain the observed data, because it is based on phenomenological equations masking quantum coherence effects. The fundamental density matrix equation derived here from basic quantum measurement theory considerations naturally incorporates the quantum Zeno effect and readily explains recent experimental observations on low- and high-magnetic-field radical-ion-pair reactions.Comment: 10 pages, 5 figure

    The screen representation of vector coupling coefficients or Wigner 3j symbols: exact computation and illustration of the asymptotic behavior

    Full text link
    The Wigner 3j3j symbols of the quantum angular momentum theory are related to the vector coupling or Clebsch-Gordan coefficients and to the Hahn and dual Hahn polynomials of the discrete orthogonal hyperspherical family, of use in discretization approximations. We point out the important role of the Regge symmetries for defining the screen where images of the coefficients are projected, and for discussing their asymptotic properties and semiclassical behavior. Recursion relationships are formulated as eigenvalue equations, and exploited both for computational purposes and for physical interpretations.Comment: 14 pages, 8 figures, presented at ICCSA 2014, 14th International Conference on Computational Science and Application

    Symmetric angular momentum coupling, the quantum volume operator and the 7-spin network: a computational perspective

    Full text link
    A unified vision of the symmetric coupling of angular momenta and of the quantum mechanical volume operator is illustrated. The focus is on the quantum mechanical angular momentum theory of Wigner's 6j symbols and on the volume operator of the symmetric coupling in spin network approaches: here, crucial to our presentation are an appreciation of the role of the Racah sum rule and the simplification arising from the use of Regge symmetry. The projective geometry approach permits the introduction of a symmetric representation of a network of seven spins or angular momenta. Results of extensive computational investigations are summarized, presented and briefly discussed.Comment: 15 pages, 10 figures, presented at ICCSA 2014, 14th International Conference on Computational Science and Application

    The Screen representation of spin networks: 2D recurrence, eigenvalue equation for 6j symbols, geometric interpretation and Hamiltonian dynamics

    Full text link
    This paper treats 6j symbols or their orthonormal forms as a function of two variables spanning a square manifold which we call the "screen". We show that this approach gives important and interesting insight. This two dimensional perspective provides the most natural extension to exhibit the role of these discrete functions as matrix elements that appear at the very foundation of the modern theory of classical discrete orthogonal polynomials. Here we present 2D and 1D recursion relations that are useful for the direct computation of the orthonormal 6j, which we name U. We present a convention for the order of the arguments of the 6j that is based on their classical and Regge symmetries, and a detailed investigation of new geometrical aspects of the 6j symbols. Specifically we compare the geometric recursion analysis of Schulten and Gordon with the methods of this paper. The 1D recursion relation, written as a matrix diagonalization problem, permits an interpretation as a discrete Schr\"odinger-like equations and an asymptotic analysis illustrates semiclassical and classical limits in terms of Hamiltonian evolution.Comment: 14 pages,9 figures, presented at ICCSA 2013 13th International Conference on Computational Science and Applicatio

    Non-uniqueness of the Dirac theory in a curved spacetime

    Full text link
    We summarize a recent work on the subject title. The Dirac equation in a curved spacetime depends on a field of coefficients (essentially the Dirac matrices), for which a continuum of different choices are possible. We study the conditions under which a change of the coefficient fields leads to an equivalent Hamiltonian operator H, or to an equivalent energy operator E. In this paper, we focus on the standard version of the gravitational Dirac equation, but the non-uniqueness applies also to our alternative versions. We find that the changes which lead to an equivalent operator H, or respectively to an equivalent operator E, are determined by initial data, or respectively have to make some point-dependent antihermitian matrix vanish. Thus, the vast majority of the possible coefficient changes lead neither to an equivalent operator H, nor to an equivalent operator E, whence a lack of uniqueness. We show that even the Dirac energy spectrum is not unique.Comment: 13 pages (standard 12pt article format). Text of a talk given at the 1st Mediterranean Conference on Classical and Quantum Gravity, Kolymbari (Greece), Sept. 14-18, 200

    A New Recursion Relation for the 6j-Symbol

    Full text link
    The 6j-symbol is a fundamental object from the re-coupling theory of SU(2) representations. In the limit of large angular momenta, its asymptotics is known to be described by the geometry of a tetrahedron with quantized lengths. This article presents a new recursion formula for the square of the 6j-symbol. In the asymptotic regime, the new recursion is shown to characterize the closure of the relevant tetrahedron. Since the 6j-symbol is the basic building block of the Ponzano-Regge model for pure three-dimensional quantum gravity, we also discuss how to generalize the method to derive more general recursion relations on the full amplitudes.Comment: 10 pages, v2: title and introduction changed, paper re-structured; Annales Henri Poincare (2011
    corecore