11 research outputs found

    Aspartic proteinase napsin is a useful marker for diagnosis of primary lung adenocarcinoma

    Get PDF
    Napsin A is an aspartic proteinase expressed in lung and kidney. We have reported that napsin A is expressed in type II pneumocytes and in adenocarcinomas of the lung. The expression of napsin was examined in 118 lung tissues including 16 metastases by in situ hybridisation. Napsin was expressed in the tumour cell compartment in 33 of 39 adenocarcinomas (84.6%), in two of 11 large cell carcinomas and in one lung metastasis of a renal cell carcinoma. Expression of napsin was found to be associated with a high degree of differentiation in adenocarcinoma. Immunohistochemistry was performed for three proteins currently used as markers for lung adenocarcinoma : surfactant protein-A, surfactant protein-B and thyroid transcription factor-1. Thyroid transcription factor-1 showed the same sensitivity (84.6%) as napsin for adenocarcinoma, whereas surfactant protein-A and surfactant protein-B showed lower sensitivities. Among these markers, napsin showed the highest specificity (94.3%) for adenocarcinoma in nonsmall cell lung carcinoma. We conclude that napsin is a promising marker for the diagnosis of primary lung adenocarcinoma

    The role of alveolar type II cells in swine leptospirosis

    Full text link
    Abstract: This study aimed to investigate a possible relationship between alveolar type II cells and the inflammatory response to infection with Leptospira spp., and thus comprise a further element that can be involved in the pathogenesis of lung injury in naturally infected pigs. The study group consisted of 73 adult pigs that were extensively reared and slaughtered in Teresina, Piauí state, and Timon, Maranhão state, Brazil. The diagnosis of leptospirosis was made using the microscopic agglutination test (MAT) aided by immunohistochemistry and polymerase chain reaction. The MAT registered the occurrence of anti-Leptospira antibodies in 10.96% (8/73) of the pigs. Immunohistochemistry allowed for the visualization of the Leptospira spp. antigen in the lungs of 87.67% (64/73) of the pigs. There was hyperplasia of bronchus-associated lymphoid tissue and circulatory changes, such as congestion of alveolar septa, parenchymal hemorrhage and edema within the alveoli. Lung inflammation was more intense (p = 0.0312) in infected animals, which also showed increased thickening of the alveolar septa (p = 0.0006). Evaluation of alveolar type II (ATII) cells using an anti-TTF-1 (Thyroid Transcription Factor-1) antibody showed that there were more immunostained cells in the non-infected pigs (53.8%) than in the infected animals (46.2%) and that there was an inverse correlation between TTF-1 positive cells and the inflammatory infiltrate. There was no amplification of Leptospira DNA in the lung samples, but leptospiral DNA amplification was observed in the kidneys. The results of this study showed that a relationship exists between a decrease in alveolar type II cells and a leptospire infection. Thus, this work points to the importance of studying the ATII cells as a potential marker of the level of lung innate immune response during leptospirosis in pigs

    Genetically engineered protein in hydrogels tailors stimuli-responsive characteristics

    No full text
    A hybrid material that integrates genetically engineered proteins within hydrogels capable of producing a stimulus-responsive action mechanism was analyzed. Parametric studies were undertaken to understand the relationship between the extent of responsive swelling and the amounts of crosslinker and protein used to prepare the hydrogel. The stimuli-responsive hydrogel exhibited three specific swelling stages in response to various ligands offering additional fine-tuned control over a conventional two-stage swelling hydrogel. The prepared material was used in the sensing, and subsequent gating and transport of biomolecules across a polymer network, demonstrating its potential application in microfluidics and miniaturized drug-delivery systems.close15113

    The elevation of serum napsin A in idiopathic pulmonary fibrosis, compared with KL-6, surfactant protein-A and surfactant protein-D

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Napsin A, an aspartic protease, is mainly expressed in alveolar type-II cells and renal proximal tubules and is a putative immunohistochemical marker for pulmonary adenocarcinomas. This study sought to determine whether napsin A could be measured in the serum to evaluate its relationship to idiopathic pulmonary fibrosis (IPF) and determine whether renal dysfunction might affect serum napsin A levels.</p> <p>Methods</p> <p>Serum levels of napsin A were measured in 20 patients with IPF, 34 patients with lung primary adenocarcinoma, 12 patients with kidney diseases, and 20 healthy volunteers. Surfactant protein (SP)-A, SP-D, and Krebs von den Lungen-6 (KL-6) levels in serum and pulmonary function tests were also evaluated in IPF patients.</p> <p>Results</p> <p>Circulating levels of napsin A were increased in patients with IPF, as compared with healthy controls, and they correlated with the severity of disease. Moreover, the serum napsin A levels were not elevated in patients with pulmonary adenocarcinoma or renal dysfunction. The distinguishing point between IPF and the controls was that the area under the receiver operating characteristic curve (ROC) of napsin A was larger than that of KL-6, SP-A, or SP-D.</p> <p>Conclusion</p> <p>These findings suggest that serum napsin A may be a candidate biomarker for IPF.</p
    corecore