2,488 research outputs found

    CXOU J160103.1-513353: another CCO with a carbon atmosphere?

    Full text link
    We report on the analysis of XMM-Newton observations of the central compact object CXOU J160103.1-513353 located in the center of the non-thermally emitting supernova remnant (SNR) G330.2+1.0. The X-ray spectrum of the source is well described with either single-component carbon or two-component hydrogen atmosphere models. In the latter case, the observed spectrum is dominated by the emission from a hot component with a temperature ~3.9MK, corresponding to the emission from a hotspot occupying ~1% of the stellar surface (assuming a neutron star with mass M = 1.5M⊙_\odot, radius of 12 km, and distance of ~5 kpc as determined for the SNR). The statistics of the spectra and obtained upper limits on the pulsation amplitude expected for a rotating neutron star with hot spots do not allow us to unambiguously distinguish between these two scenarios. We discuss, however, that while the non-detection of the pulsations can be explained by the unfortunate orientation in CXOU J160103.1-513353, this is not the case when the entire sample of similar objects is considered. We therefore conclude that the carbon atmosphere scenario is more plausible.Comment: accepted in A&

    Searching for coherent pulsations in ultraluminous X-ray sources

    Full text link
    Luminosities of ultraluminous X-ray sources (ULXs) are uncomfortably large if compared to the Eddington limit for isotropic accretion onto stellar-mass object. Most often either supercritical accretion onto stellar mass black hole or accretion onto intermediate mass black holes is invoked the high luminosities of ULXs. However, the recent discovery of coherent pulsations from M82 ULX with NuSTAR showed that another scenario implying accretion onto a magnetized neutron star is possible for ULXs. Motivated by this discovery, we re-visited the available XMM-Newton archival observations of several bright ULXs with a targeted search for pulsations to check whether accreting neutron stars might power other ULXs as well. We have found no evidence for significant coherent pulsations in any of the sources including the M82 ULX. We provide upper limits for the amplitude of possibly undetected pulsed signal for the sources in the sample.Comment: 2 pages, 1 figure, submitted to A&

    Orbital parameters of V 0332+53 from 2015 giant outburst data

    Full text link
    We present the updated orbital solution for the transient Be X-ray binary V 0332+53 comple- menting historical measurements with the data from the gamma-ray burst monitor onboard Fermi obtained during the outburst in June-October 2015. We model the observed changes in the spin- frequency of the pulsar and deduce the orbital parameters of the system. We significantly improve existing constrains and show that contrary to the previous findings no change in orbital parameters is required to explain the spin evolution of the source during the outbursts in 1983, 2005 and 2015. The reconstructed intrinsic spin-up of the neutron star during the latest outburst is found to be comparable with previosly observed values and predictions of the accretion torque theory.Comment: 3 pages, 2 figures, submitted to A&

    Supergiant, fast, but not so transient 4U 1907+09

    Full text link
    We have investigated the dipping activity observed in the high-mass X-ray binary 4U 1907+09 and shown that the source continues to pulsate in the "off" state, noting that the transition between the "on" and "off" states may be either dip-like or flare-like. This behavior may be explained in the framework of the "gated accretion" scenario proposed to explain the flares in supergiant fast X-ray transients (SFXTs). We conclude that 4U 1907+09 might prove to be a missing link between the SFXTs and ordinary accreting pulsars.Comment: 4 pages 5 figures, accepted in A&

    Population of the Galactic X-ray binaries and eRosita

    Full text link
    The population of the Galactic X-ray binaries has been mostly probed with moderately sensitive hard X-ray surveys so far. The eRosita mission will provide, for the first time a sensitive all-sky X-ray survey in the 2-10 keV energy range, where the X-ray binaries emit most of the flux and discover the still unobserved low-luminosity population of these objects. In this paper, we briefly review the current constraints for the X-ray luminosity functions of high- and low-mass X-ray binaries and present our own analysis based the INTEGRAL 9-year Galactic survey, which yields improved constraints. Based on these results, we estimate the number of new XRBs to be detected in the eRosita all-sky surveyComment: accepted for publication in A&

    BeppoSAX observations of XTE J1946+274

    Full text link
    We report on the BeppoSAX monitoring of a giant outburst of the transient X-ray pulsar XTE J1946+274 in 1998. The source was detected with a flux of ~ 4 x 10^(-9) erg cm^(-2) s^(-1) (in 0.1 - 120 keV range). The broadband spectrum, typical for accreting pulsars, is well described by a cutoff power law with a cyclotron resonance scattering feature (CRSF) at ~ 38 keV. This value is consistent with earlier reports based on the observations with Suzaku at factor of ten lower luminosity, which implies that the feature is formed close to the neutron star surface rather than in the accretion column. Pulsations with P ~ 15.82 s were observed up to ~ 70 keV. The pulse profile strongly depends on energy and is characterised by a "soft" and a "hard" peaks shifted by half period, which suggests a strong phase dependence of the spectrum, and that two components with roughly orthogonal beam patterns are responsible for the observed pulse shape. This conclusion is supported by the fact that the CRSF, despite its relatively high energy, is only detected in the spectrum of the soft peak of the pulse profile. Along with the absence of correlation of the line energy with luminosity, this could be explained in the framework of the recently proposed "reflection" model for CRSF formation. However more detailed modelling of both line and continuum formation are required to confirm this interpretation

    Zeroes of combinations of Bessel functions and mean charge of graphene nanodots

    Full text link
    We establish some properties of the zeroes of sums and differences of contiguous Bessel functions of the first kind. As a byproduct, we also prove that the zeroes of the derivatives of Bessel functions of the first kind of different orders are interlaced the same way as the zeroes of Bessel functions themselves. As a physical motivation, we consider gated graphene nanodots subject to Berry-Mondragon boundary conditions. We determine the allowed energy levels and calculate the mean charge at zero temperature. We discuss in detail its dependence on the gate (chemical) potential.Comment: vesrion accepted to Theoretical and Mathematical Physics, 18 pages, 1 figur

    Charge density and conductivity of disordered Berry-Mondragon graphene nanoribbons

    Full text link
    We consider gated graphene nanoribbons subject to Berry-Mondragon boundary conditions in the presence of weak impurities. Using field--theoretical methods, we calculate the density of charge carriers (and, thus, the quantum capacitance) as well as the optical and DC conductivities at zero temperature. We discuss in detail their dependence on the gate (chemical) potential, and reveal a non-linear behaviour induced by the quantization of the transversal momentum.Comment: 17 pages, version accepted for publication in EPJ

    A non-pulsating neutron star in the supernova remnant HESS J1731-347 / G353.6-0.7 with a carbon atmosphere

    Full text link
    Context: The CCO candidate in the center of the supernova remnant shell HESS J1731-347 / G353.6-0.7 shows no pulsations and exhibits a blackbody-like X-ray spectrum. If the absence of pulsations is interpreted as evidence for the emitting surface area being the entire neutron star surface, the assumption of the measured flux being due to a blackbody emission translates into a source distance that is inconsistent with current estimates of the remnant's distance. Aims: With the best available observational data, we extended the pulse period search down to a sub-millisecond time scale and used a carbon atmosphere model to describe the X-ray spectrum of the CCO and to estimate geometrical parameters of the neutron star. Methods: To search for pulsations we used data of an observation of the source with XMM-Newton performed in timing mode. For the spectral analysis, we used earlier XMM-Newton observations performed in imaging mode, which permits a more accurate treatment of the background. The carbon atmosphere models used to fit the CCO spectrum are computed assuming hydrostatic and radiative equilibria and take into account pressure ionization and the presence of spectral lines. Results: Our timing analysis did not reveal any pulsations with a pulsed fraction above ~8% down to 0.2 ms. This finding further supports the hypothesis that the emitting surface area is the entire neutron star surface. The carbon atmosphere model provides a good fit to the CCO spectrum and leads to a normalization consistent with the available distance estimates of the remnant. The derived constraints on the mass and radius of the source are consistent with reasonable values of the neutron star mass and radius. After the CCO in Cas A, the CCO in HESS J1731-347 / G353.6-0.7 is the second object of this class for which a carbon atmosphere model provides a consistent description of X-ray emission.Comment: 6 pages, 5 figures, accepted for publication in Astronomy&Astrophysic
    • …
    corecore