396 research outputs found

    Further supporting evidence for REEP1 phenotypic and allelic heterogeneity.

    Get PDF
    Heterozygous mutations in REEP1 (MIM #609139) encoding the receptor expression-enhancing protein 1 (REEP1) are a well-recognized and relatively frequent cause of autosomal dominant hereditary spastic paraplegia (HSP), SPG31.1 REEP1 localizes in the mitochondria and endoplasmic reticulum (ER) and facilitates ER-mitochondria interactions.2 In addition to the HSP phenotype, REEP1 has been associated with an autosomal dominant spinal type of Charcot-Marie-Tooth disease in 2 families.3 More recently, a patient with homozygous REEP1 mutation with a much more severe phenotype akin to spinal muscular atrophy with respiratory distress type 1 (SMARD1) was reported.4 In this report, we present a patient with a homozygous mutation in REEP1 manifesting a severe congenital distal spinal muscular atrophy (SMA) with diaphragmatic paralysis, expanding the phenotype from mild autosomal dominant HSP through to severe recessive distal SMA pattern

    Epileptic Phenotypes Associated With SNAREs and Related Synaptic Vesicle Exocytosis Machinery

    Get PDF
    SNAREs (soluble N-ethylmaleimide sensitive factor attachment protein receptor) are an heterogeneous family of proteins that, together with their key regulators, are implicated in synaptic vesicle exocytosis and synaptic transmission. SNAREs represent the core component of this protein complex. Although the specific mechanisms of the SNARE machinery is still not completely uncovered, studies in recent years have provided a clearer understanding of the interactions regulating the essential fusion machinery for neurotransmitter release. Mutations in genes encoding SNARE proteins or SNARE complex associated proteins have been associated with a variable spectrum of neurological conditions that have been recently defined as “SNAREopathies.” These include neurodevelopmental disorder, autism spectrum disorder (ASD), movement disorders, seizures and epileptiform abnormalities. The SNARE phenotypic spectrum associated with seizures ranges from simple febrile seizures and infantile spasms, to severe early-onset epileptic encephalopathies. Our study aims to review and delineate the epileptic phenotypes associated with dysregulation of synaptic vesicle exocytosis and transmission, focusing on the main proteins of the SNARE core complex (STX1B, VAMP2, SNAP25), tethering complex (STXBP1), and related downstream regulators

    A Review of Copy Number Variants in Inherited Neuropathies

    Get PDF
    The rapid development in the last 10-15 years of microarray technologies, such as oligonucleotide array Comparative Genomic Hybridization (CGH) and Single Nucleotide Polymorphisms (SNP) genotyping array, has improved the identification of fine chromosomal structural variants, ranging in length from kilobases (kb) to megabases (Mb), as an important cause of genetic differences among healthy individuals and also as disease-susceptibility and/or disease-causing factors. Structural genomic variations due to unbalanced chromosomal rearrangements are known as Copy-Number Variants (CNVs) and these include variably sized deletions, duplications, triplications and translocations. CNVs can significantly contribute to human diseases and rearrangements in several dosagesensitive genes have been identified as an important causative mechanism in the molecular aetiology of Charcot-Marie-Tooth (CMT) disease and of several CMT-related disorders, a group of inherited neuropathies with a broad range of clinical phenotypes, inheritance patterns and causative genes. Duplications or deletions of the dosage-sensitive gene PMP22 mapped to chromosome 17p12 represent the most frequent causes of CMT type 1A and Hereditary Neuropathy with liability to Pressure Palsies (HNPP), respectively. Additionally, CNVs have been identified in patients with other CMT types (e.g., CMT1X, CMT1B, CMT4D) and different hereditary poly- (e.g., giant axonal neuropathy) and focal- (e.g., hereditary neuralgic amyotrophy) neuropathies, supporting the notion of hereditary peripheral nerve diseases as possible genomic disorders and making crucial the identification of fine chromosomal rearrangements in the molecular assessment of such patients. Notably, the application of advanced computational tools in the analysis of Next-Generation Sequencing (NGS) data has emerged in recent years as a powerful technique for identifying a genome-wide scale complex structural variants (e.g., as the ones resulted from balanced rearrangements) and also smaller pathogenic (intragenic) CNVs that often remain beyond the detection limit of most conventional genomic microarray analyses; in the context of inherited neuropathies where more than 70 disease-causing genes have been identified to date, NGS and particularly Whole-Genome Sequencing (WGS) hold the potential to reduce the number of genomic assays required per patient to reach a diagnosis, analyzing with a single test all the Single Nucleotide Variants (SNVs) and CNVs in the genes possibly implicated in this heterogeneous group of disorders

    A paradigmatic autistic phenotype associated with loss of PCDH11Y and NLGN4Y genes

    Get PDF
    Background: Most studies relative to Y chromosome abnormalities are focused on the sexual developmental disorders. Recently, a few studies suggest that some genes located on Y chromosome may be related to different neurodevelopment disorders. Case presentation: We report a child with sexual developmental disorder associated with a peculiar phenotype characterized by severe language impairment and autistic behaviour associated with a mosaicism [45,X(11)/46,XY(89)] and a partial deletion of the short and long arm of Y chromosome (del Yp11.31q11.23) that also involves the loss of both PCDH11Y and NLGN4Y genes. To our knowledge no study has ever reported the occurrence of the lack of both PCDH11Y and NLGN4Y located in the Y chromosome in the same patient. Conclusions: We hypothesized a functional complementary role of PCDH11Y and NLGN4Y within formation/maturation of the cerebral cortex. The impairment of early language development may be mainly related to the lack of PCDH11Y that underlies the early language network development and the later appearance of the autistic behaviour may be mainly related to deficit of inhibitory glicinergic neurotransmission NLGN4Y-linked

    Allelic and phenotypic heterogeneity in Junctophillin-3 related neurodevelopmental and movement disorders.

    Get PDF
    Junctophilin-3 belongs to a triprotein junctional complex implicated in the regulation of neuronal excitability and involved in the formation of junctional membrane structures between voltage-gated ion channels and endoplasmic (ryanodine) reticular receptors. A monoallelic trinucleotide repeat expansion located within the junctophilin-3 gene (JPH3) has been implicated in a rare autosomal dominant (AD) late-onset (and progressive) disorder clinically resembling Huntington disease (HD), and known as HD-like 2 (HDL2; MIM# 606438). Although the exact molecular mechanisms underlying HDL2 has not yet been fully elucidated, toxic gain-of-function of the aberrant transcript (containing the trinucleotide repeat) and loss of expression of (full-length) junctophilin-3 have both been implicated in HDL2 pathophysiology. In this study, we identified by whole exome sequencing (WES) a JPH3 homozygous truncating variant [NM_020655.4: c.17405dup; p.(Val581Argfs*137)]. in a female individual affected with genetically undetermined neurodevelopmental anomalies (including delayed motor milestones, abnormal social communication, language difficulties and borderline cognitive impairment) and paroxysmal attacks of dystonia since her early infancy. Our study expands the JPH3-associated mutational spectrum and clinical phenotypes, implicating the loss of Junctophilin-3 in heterogeneous neurodevelopmental phenotypes and early-onset paroxysmal movement disorders

    Brain Organoids as Model Systems for Genetic Neurodevelopmental Disorders

    Get PDF
    Neurodevelopmental disorders (NDDs) are a group of disorders in which the development of the central nervous system (CNS) is disturbed, resulting in different neurological and neuropsychiatric features, such as impaired motor function, learning, language or non-verbal communication. Frequent comorbidities include epilepsy and movement disorders. Advances in DNA sequencing technologies revealed identifiable genetic causes in an increasingly large proportion of NDDs, highlighting the need of experimental approaches to investigate the defective genes and the molecular pathways implicated in abnormal brain development. However, targeted approaches to investigate specific molecular defects and their implications in human brain dysfunction are prevented by limited access to patient-derived brain tissues. In this context, advances of both stem cell technologies and genome editing strategies during the last decade led to the generation of three-dimensional (3D) in vitro-models of cerebral organoids, holding the potential to recapitulate precise stages of human brain development with the aim of personalized diagnostic and therapeutic approaches. Recent progresses allowed to generate 3D-structures of both neuronal and non-neuronal cell types and develop either whole-brain or region-specific cerebral organoids in order to investigate in vitro key brain developmental processes, such as neuronal cell morphogenesis, migration and connectivity. In this review, we summarized emerging methodological approaches in the field of brain organoid technologies and their application to dissect disease mechanisms underlying an array of pediatric brain developmental disorders, with a particular focus on autism spectrum disorders (ASDs) and epileptic encephalopathies

    Commonalities and distinctions between two neurodevelopmental disorder subtypes associated with SCN2A and SCN8A variants and literature review

    Get PDF
    This study was aimed to analyze the commonalities and distinctions of voltage-gated sodium channels, Nav1.2, Nav1.6, in neurodevelopmental disorders. An observational study was performed including two patients with neurodevelopmental disorders. The demographic, electroclinical, genetic, and neuropsychological characteristics were analyzed and compared with each other and then with the subjects carrying the same genetic variants reported in the literature. The clinical features of one of them argued for autism spectrum disorder and developmental delay, the other for intellectual disability, diagnoses confirmed by the neuropsychological assessment. The first patient was a carrier of SCN2A (p.R379H) variant while the second was carrier of SCN8A (p.E936K) variant, both involving the pore loop of the two channels. The results of this study suggest that the neurodevelopmental disorders without overt epilepsy of both patients can be the consequences of loss of function of Nav1.2/Nav1.6 channels. Notably, the SCN2A variant, with an earlier expression timing in brain development, resulted in a more severe phenotype as autism spectrum disorder and developmental delay, while the SCN8A variant, with a later expression timing, resulted in a less severe phenotype as intellectual disability

    Novel variants underlying autosomal recessive intellectual disability in Pakistani consanguineous families

    Get PDF
    Background: Intellectual disability (ID) is both a clinically diverse and genetically heterogeneous group of disorder, with an onset of cognitive impairment before the age of 18 years. ID is characterized by significant limitations in intellectual functioning and adaptive behaviour. The identification of genetic variants causing ID and neurodevelopmental disorders using whole-exome sequencing (WES) has proven to be successful. So far more than 1222 primary and 1127 candidate genes are associated with ID. Methods: To determine pathogenic variants causative of ID in three unrelated consanguineous Pakistani families, we used a combination of WES, homozygosity-by-descent mapping, de-deoxy sequencing and bioinformatics analysis. Results: Rare pathogenic single nucleotide variants identified by WES which passed our filtering strategy were confirmed by traditional Sanger sequencing and segregation analysis. Novel and deleterious variants in VPS53, GLB1, and MLC1, genes previously associated with variable neurodevelopmental anomalies, were found to segregate with the disease in the three families. Conclusions: This study expands our knowledge on the molecular basis of ID as well as the clinical heterogeneity associated to different rare genetic causes of neurodevelopmental disorders. This genetic study could also provide additional knowledge to help genetic assessment as well as clinical and social management of ID in Pakistani familie

    Identification of common genetic markers of paroxysmal neurological disorders using a network analysis approach

    Get PDF
    Emerging data have established links between paroxysmal neurological disorders or psychiatric disorder, such as migraine, ataxia, movement disorders and epilepsy. Common gene signatures such as expression, protein interaction and the associated signalling pathways link genes in these associated disorders, with the object to predict unknown disease or risk genes. In this study, we used gene interaction networks to investigate common gene signatures associated with the above phenotypes. In total, 19 candidate genes were used for making an interaction network which further revealed 39 associated genes (including KCNA1, SCN2A, CACNA1A, KCNM4, KCNO3, SCN1B and CACNB4) implicated in paroxysmal neurological disorders development and progression. The meta-regression analysis showed the strongest association of SCN2A with genes involved in schizophrenia and neurodevelopmental disorders. Importantly, our analysis showed KCNMA1 as a common gene signature with a link to epilepsy, movement disorders and wide paroxysmal neurological presentations—with the greatest potential risk of being a disease gene in a paroxysmal or psychiatric disorder. Further gene interaction analysis is required to identify unidentified gene interactions which may be targets for future drugs development

    Tay-Sachs Disease: Two Novel Rare HEXA Mutations from Pakistan and Morocco

    Get PDF
    Background: Tay-Sachs disease (TSD) is a rare autosomalrecessive genetic disorder characterized by progressive destruction of nerve cells in the brain and spinal cord. It is caused by genetic variations in the HEXA gene leading to a deficiency of β hexosaminidase A (HEXA) isoenzyme activity. This study aimed to identify causative gene variants in 3 unrelated consanguineous families presented with TSD from Pakistan and Morocco. / Methods: Detailed clinical investigations were carried out on probands in 3 unrelated consanguineous families of Pakistani and Moroccan origin. Targeted gene sequencing and Whole Exome Sequencing (WES) were performed for variant identification. Candidate variants were checked for co-segregation with the phenotype using Sanger sequencing. Public databases including ExAC, GnomAD, dbSNP and the 1,000 Genome Project were searched to determine frequencies of the alleles. Conservation of the missense variants was ensured by aligning orthologous protein sequences from diverse vertebrate species. / Results: We report on 3 children presented with Tay-Sachs Disease. The β hexosaminidaseA enzyme activity was reduced in the Pakistani patient in one of the pedigrees. Genetic testing revealed 2 novel homozygous variants (p.Asp386Alafs*13 and p.Trp266Gly) in the gene HEXA in Pakistani and Moroccan patients respectively.The third family of Pakistani origin revealed a previously reported variant (p.Tyr427Ilefs*5) in HEXA. p.Tyr427Ilefs*5 is the most commonly occurring pathogenic variationin Ashkenazi but was not reported in Pakistani population. / Conclusion: Our study further expands the ethnic and mutational spectrum of Tay-Sachs disease emphasizing the usefulness of WES as a powerful diagnostic tool where enzymatic activity is not performed for Tay-Sachs disease. The study recommends targeted screening for these mutations (p.Tyr427Ilefs5) for cost effective testing of TSD patients. Further, the study would assist in carrier testing and prenatal diagnosis of the affected families
    • …
    corecore