429 research outputs found

    HERA-B Framework for Online Calibration and Alignment

    Full text link
    This paper describes the architecture and implementation of the HERA-B framework for online calibration and alignment. At HERA-B the performance of all trigger levels, including the online reconstruction, strongly depends on using the appropriate calibration and alignment constants, which might change during data taking. A system to monitor, recompute and distribute those constants to online processes has been integrated in the data acquisition and trigger systems.Comment: Submitted to NIM A. 4 figures, 15 page

    ΠžΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½ΠΎ-мСтодологичСскиС основы систСмы психологичСской Ρ€Π΅Π°Π±ΠΈΠ»ΠΈΡ‚Π°Ρ†ΠΈΠΈ Π² контСкстС ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΠΈ Β«Π’Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½Ρ‹ инвалидности»

    Get PDF
    The article brings forward the results of the study continuing a series ofscientific elaborations of the construct of the internal picture of disability. The purpose of this series is to improve rehabilitation approaches by means of rising the adherence to rehabilitation within the psychological paradigm and the rehabilitation context as a whole.This paper summarizes the results of the study of personal, adaptive reactions of patients to a situation of disabling diseases on account of socioeconomic and physiological consequences of the disease. Patients with the main disabling pathologies (n = 510), forming a leading position in the structure of disability of the Russian Federation, took part in the study. Statistical processing of the complex of psychological parameters made it possible to assess the structure of psychologicalprocessing of a situation of disabling diseases in patients in the context of a rehabilitation willingness to cope with the arising effects of the disease. The study reveals the specificity of rehabilitation activities, which is characterized by varying degrees of inclusion of psychological resources depending on the degree of frustration. Minor frustration is mainly characterized by a psychological fixation on the disease; its further growth potentiates the patient to a greater variability ofadaptive behavior with the shift of responding from the focus of negative effects of the disease to personal self-determination, reflection of personal values and senses. A high degree of frustration blocks the rehabilitation activity; it is shown in a β€œchaotic” character of reactions with a retreat from a reflective component into predominance of non-adaptive β€œemotional” strategies. The study reveals major rehabilitation β€œmarkers” which characterize personal rehabilitation potential andrehabilitation prognosis for the effective formation of the individual program of rehabilitation of patients.The authors offer the model of the system of psychological rehabilitation in the context of the concept of the internal picture of disability and reveal its organizational, procedural, and methodological aspects. They also state objectives, principles, conditions, criteria of an effective rehabilitation outcome, sequence of rehabilitation activities, and existing problems in the effective implementation of rehabilitation of patients at various stages of The article brings forward the results of the study continuing a series of scientific elaborations of the construct of the internal picture of disability. The purpose of this series is to improve rehabilitation approaches by means of rising the adherence to rehabilitation within the psychological paradigm and the rehabilitation context as a whole. This paper summarizes the results of the study of personal, adaptive reactions of patients to a situation of disabling diseases on account of socioeconomic and physiological consequences of the disease. Patients with the main disabling pathologies (n = 510), forming a leading position in the structure of disability of theRussian Federation, took part in the study. Statistical processing of the complex of psychological parameters made it possible to assess the structure of psychological processing of a situation of disabling diseases in patients in the context of a rehabilitation willingness to cope with the arising effects of the disease. The study reveals the specificity of rehabilitation activities, which is characterized by varying degrees of inclusion of psychological resources depending on the degreeof frustration. Minor frustration is mainly characterized by a psychological fixation on the disease; its further growth potentiates the patient to a greater variability of adaptive behavior with the shift of responding from the focus of negative effects of the disease to personal self-determination, reflection of personal values andsenses. A high degree of frustration blocks the rehabilitation activity; it is shown in a β€œchaotic” character of reactions with a retreat from a reflective component into predominance of non-adaptive β€œemotional” strategies. The study reveals major rehabilitation β€œmarkers” which characterize personal rehabilitation potential and rehabilitation prognosis for the effective formation of the individual program ofrehabilitation of patients. The authors offer the model of the system of psychological rehabilitation in the context of the concept of the internal picture of disability and reveal its organizational, procedural, and methodological aspects. They also state objectives, principles, conditions, criteria of an effective rehabilitation outcome, sequence of rehabilitation activities, and existing problems in the effective implementation of rehabilitation of patients at various stages of the disease (before disablement, being registered as a disabled person, and after disablement), including possible practices for improving efficiency of psychological rehabilitation of patients.Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ прСдставлСны Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдования, ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°ΡŽΡ‰Π΅Π³ΠΎ ΡΠ΅Ρ€ΠΈΡŽ Π½Π°ΡƒΡ‡Π½Ρ‹Ρ… Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΎΠΊ конструкта «ВнутрСнняя ΠΊΠ°Ρ€Ρ‚ΠΈΠ½Π° инвалидности», Ρ†Π΅Π»ΡŒΡŽ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… являСтся ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ€Π΅Π°Π±ΠΈΠ»ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ² Π² ΠΏΠ»Π°Π½Π΅ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ привСрТСнности ΠΊ Ρ€Π΅Π°Π±ΠΈΠ»ΠΈΡ‚Π°Ρ†ΠΈΠΈ Π² Ρ€Π°ΠΌΠΊΠ°Ρ… психологичСской ΠΏΠ°Ρ€Π°Π΄ΠΈΠ³ΠΌΡ‹ ΠΈ Ρ€Π΅Π°Π±ΠΈΠ»ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΌ контСкстС Π² Ρ†Π΅Π»ΠΎΠΌ. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдования личностной, Π°Π΄Π°ΠΏΡ‚Π°- Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π½Π° ΡΠΈΡ‚ΡƒΠ°Ρ†ΠΈΡŽ ΠΈΠ½Π²Π°Π»ΠΈΠ΄ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ заболСвания вслСдствиС ΡΠΎΡ†ΠΈΠ°Π»ΡŒΠ½ΠΎ-экономичСских ΠΈ психофизиологичСских послСдствий Π±ΠΎΠ»Π΅Π·Π½ΠΈ. Π’ исслСдовании ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π»ΠΈ участиС Π±ΠΎΠ»ΡŒΠ½Ρ‹Π΅ основных ΠΈΠ½Π²Π°Π»ΠΈΠ΄ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΉ (n = 510), Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Π²Π΅Π΄ΡƒΡ‰ΠΈΠ΅ ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ Π² структурС инвалидности Российской Π€Π΅Π΄Π΅Ρ€Π°Ρ†ΠΈΠΈ. БтатистичСская ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° совокуп- ности психологичСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»Π° ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ структуру психоло- гичСской ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π±ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ ситуации ΠΈΠ½Π²Π°Π»ΠΈΠ΄ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ заболСвания Π² контСкстС Ρ€Π΅Π°Π±ΠΈΠ»ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ готовности ΠΊ ΠΏΡ€Π΅ΠΎΠ΄ΠΎΠ»Π΅Π½ΠΈΡŽ Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‰ΠΈΡ… послСдствий Π±ΠΎΠ»Π΅Π·Π½ΠΈ. ИсслСдованиС выявило спСцифику Ρ€Π΅Π°Π±ΠΈΠ»ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ Π°ΠΊΡ‚ивности, ΠΊΠΎΡ‚орая характСризуСтся Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒΡŽ Π²ΠΊΠ»ΡŽΡ‡Π΅Π½Π½ΠΎΡΡ‚ΠΈ психологичСских рСсурсов Π² зависимости ΠΎΡ‚ стСпСни фрустрации. ΠΠ΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ фрустрация характСризуСтся Π² большСй стСпСни психологичСской фиксациСй Π½Π° Π±ΠΎΠ»Π΅Π·Π½ΠΈ, Π΄Π°Π»Π΅Π΅ нарастаниС фрустрации ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅Ρ‚ больного ΠΊ большСй вариативности Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ повСдСния со смСщСниСм рСагирования с фокуса Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… послСдствий заболСвания ΠΊ личностному ΡΠ°ΠΌΠΎΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ, рСфлСксии личностных цСнностСй ΠΈ смыслов. ВыраТСнная ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ  фрустрации  Π±Π»ΠΎΠΊΠΈΡ€ΡƒΠ΅Ρ‚  Ρ€Π΅Π°Π±ΠΈΠ»ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΡƒΡŽ  Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ, ΠΏΡ€ΠΎΡΠ²Π»ΡΡΡΡŒ Β«Ρ…Π°ΠΎΡ‚ΠΈΡ‡Π½Ρ‹ΠΌΒ» Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΎΠΌ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ с ΡƒΡ…ΠΎΠ΄ΠΎΠΌ ΠΎΡ‚ рСфлСксивного ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π° Π² ΠΏΡ€Π΅ΠΎΠ±Π»Π°Π΄Π°Π½ΠΈΠ΅ Π΄Π΅Π·Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½Ρ‹Ρ… Β«ΡΠΌΠΎΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ…Β» стратСгий. ИсслСдованиС выявило основныС Ρ€Π΅Π°Π±ΠΈΠ»ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ Β«ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Ρ‹Β», Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰ΠΈΠ΅ личностный Ρ€Π΅Π°Π±ΠΈΠ»ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π» ΠΈ Ρ€Π΅Π°Π±ΠΈΠ»ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ· для эффСктивного формирования ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹ Ρ€Π΅Π°Π±ΠΈΠ»ΠΈΡ‚Π°Ρ†ΠΈΠΈ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ…. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° ΠΌΠΎΠ΄Π΅Π»ΡŒ ΡΠΈΡΡ‚Π΅ΠΌΡ‹ ΠΏΡΠΈΡ…ологичСской Ρ€Π΅Π°Π±ΠΈΠ»ΠΈΡ‚Π°Ρ†ΠΈΠΈ Π² ΠΊΠΎΠ½- тСкстС ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΠΈ Β«Π’Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½Ρ‹ инвалидности», раскрыты Π΅Π΅ ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ ΠΈ ΠΏΡ€ΠΎΡ†Π΅ΡΡΡƒΠ°Π»ΡŒΠ½ΠΎ-мСтодологичСскиС аспСкты, с ΡƒΠΊΠ°Π·Π°Π½ΠΈΠ΅ΠΌ Ρ†Π΅Π»Π΅ΠΉ, ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΎΠ², условий, ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ΅Π² эффСктивного Ρ€Π΅Π°Π±ΠΈΠ»ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ исхода, ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ провСдСния Ρ€Π΅Π°Π±ΠΈΠ»ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… мСроприятий ΠΈ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ Π² эффСктивной Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ€Π΅Π°Π±ΠΈΠ»ΠΈΡ‚Π°Ρ†ΠΈΠΈ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π½Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… этапах заболСвания (Π΄ΠΎ ΠΈΠ½Π²Π°Π»ΠΈΠ΄ΠΈΠ·Π°Ρ†ΠΈΠΈ, Π² процСссС прСбывания Π½Π° инвалидности ΠΈ послС Π΅Π΅ ΡƒΡ‚Ρ€Π°Ρ‚Ρ‹), с ΡƒΠΊΠ°Π·Π°Π½ΠΈΠ΅ΠΌ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ эффСктивности психологичСской Ρ€Π΅Π°Π±ΠΈΠ»ΠΈΡ‚Π°Ρ†ΠΈΠΈ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ…

    Manin matrices and Talalaev's formula

    Full text link
    We study special class of matrices with noncommutative entries and demonstrate their various applications in integrable systems theory. They appeared in Yu. Manin's works in 87-92 as linear homomorphisms between polynomial rings; more explicitly they read: 1) elements in the same column commute; 2) commutators of the cross terms are equal: [Mij,Mkl]=[Mkj,Mil][M_{ij}, M_{kl}]=[M_{kj}, M_{il}] (e.g. [M11,M22]=[M21,M12][M_{11}, M_{22}]=[M_{21}, M_{12}]). We claim that such matrices behave almost as well as matrices with commutative elements. Namely theorems of linear algebra (e.g., a natural definition of the determinant, the Cayley-Hamilton theorem, the Newton identities and so on and so forth) holds true for them. On the other hand, we remark that such matrices are somewhat ubiquitous in the theory of quantum integrability. For instance, Manin matrices (and their q-analogs) include matrices satisfying the Yang-Baxter relation "RTT=TTR" and the so--called Cartier-Foata matrices. Also, they enter Talalaev's hep-th/0404153 remarkable formulas: det(βˆ‚zβˆ’LGaudin(z))det(\partial_z-L_{Gaudin}(z)), det(1-e^{-\p}T_{Yangian}(z)) for the "quantum spectral curve", etc. We show that theorems of linear algebra, after being established for such matrices, have various applications to quantum integrable systems and Lie algebras, e.g in the construction of new generators in Z(U(gln^))Z(U(\hat{gl_n})) (and, in general, in the construction of quantum conservation laws), in the Knizhnik-Zamolodchikov equation, and in the problem of Wick ordering. We also discuss applications to the separation of variables problem, new Capelli identities and the Langlands correspondence.Comment: 40 pages, V2: exposition reorganized, some proofs added, misprints e.g. in Newton id-s fixed, normal ordering convention turned to standard one, refs. adde

    Rigidity and volume preserving deformation on degenerate simplices

    Full text link
    Given a degenerate (n+1)(n+1)-simplex in a dd-dimensional space MdM^d (Euclidean, spherical or hyperbolic space, and dβ‰₯nd\geq n), for each kk, 1≀k≀n1\leq k\leq n, Radon's theorem induces a partition of the set of kk-faces into two subsets. We prove that if the vertices of the simplex vary smoothly in MdM^d for d=nd=n, and the volumes of kk-faces in one subset are constrained only to decrease while in the other subset only to increase, then any sufficiently small motion must preserve the volumes of all kk-faces; and this property still holds in MdM^d for dβ‰₯n+1d\geq n+1 if an invariant ckβˆ’1(Ξ±kβˆ’1)c_{k-1}(\alpha^{k-1}) of the degenerate simplex has the desired sign. This answers a question posed by the author, and the proof relies on an invariant ck(Ο‰)c_k(\omega) we discovered for any kk-stress Ο‰\omega on a cell complex in MdM^d. We introduce a characteristic polynomial of the degenerate simplex by defining f(x)=βˆ‘i=0n+1(βˆ’1)ici(Ξ±i)xn+1βˆ’if(x)=\sum_{i=0}^{n+1}(-1)^{i}c_i(\alpha^i)x^{n+1-i}, and prove that the roots of f(x)f(x) are real for the Euclidean case. Some evidence suggests the same conjecture for the hyperbolic case.Comment: 27 pages, 2 figures. To appear in Discrete & Computational Geometr

    Feigin-Frenkel center in types B, C and D

    Full text link
    For each simple Lie algebra g consider the corresponding affine vertex algebra V_{crit}(g) at the critical level. The center of this vertex algebra is a commutative associative algebra whose structure was described by a remarkable theorem of Feigin and Frenkel about two decades ago. However, only recently simple formulas for the generators of the center were found for the Lie algebras of type A following Talalaev's discovery of explicit higher Gaudin Hamiltonians. We give explicit formulas for generators of the centers of the affine vertex algebras V_{crit}(g) associated with the simple Lie algebras g of types B, C and D. The construction relies on the Schur-Weyl duality involving the Brauer algebra, and the generators are expressed as weighted traces over tensor spaces and, equivalently, as traces over the spaces of singular vectors for the action of the Lie algebra sl_2 in the context of Howe duality. This leads to explicit constructions of commutative subalgebras of the universal enveloping algebras U(g[t]) and U(g), and to higher order Hamiltonians in the Gaudin model associated with each Lie algebra g. We also introduce analogues of the Bethe subalgebras of the Yangians Y(g) and show that their graded images coincide with the respective commutative subalgebras of U(g[t]).Comment: 29 pages, constructions of Pfaffian-type Sugawara operators and commutative subalgebras in universal enveloping algebras are adde

    A quantum isomonodromy equation and its application to N=2 SU(N) gauge theories

    Full text link
    We give an explicit differential equation which is expected to determine the instanton partition function in the presence of the full surface operator in N=2 SU(N) gauge theory. The differential equation arises as a quantization of a certain Hamiltonian system of isomonodromy type discovered by Fuji, Suzuki and Tsuda.Comment: 15 pages, v2: typos corrected and references added, v3: discussion, appendix and references adde
    • …
    corecore