239 research outputs found

    Evidence of an Antimicrobial-Immunomodulatory Role of Atlantic Salmon Cathelicidins during Infection with Yersinia ruckeri

    Get PDF
    Cathelicidins are a family of antimicrobial peptides that act as effector molecules of the innate immune system with broad-spectrum antimicrobial properties. These evolutionary conserved cationic host-defence peptides are integral components of the immune response of fish, which are generally believed to rely heavily on innate immune defences to invading pathogens. In this study we showed that Atlantic salmon cathelicidin 1 and 2 (asCATH1 and asCATH2) stimulated peripheral blood leukocytes increasing the transcription of the chemokine interleukin-8. Further, functional differences were identified between the two cathelicidins. In the presence of serum, asCATH1 displayed greatly diminished host haemolytic activity, while the constitutively expressed asCATH2 had no haemolytic activity with or without serum. These findings support our hypothesis that fish cathelicidins exert their primary antimicrobial action at the site of pathogen invasion such as epithelial surfaces. Further, we hypothesise that like their mammalian counterparts in the presence of serum they act as mediators of the innate and adaptive immune response via the release of cytokines thus indirectly protecting against a variety of pathogens. We highlight the importance of this immunomodulatory role from the involvement of asCATHs during an infection with the fish pathogen Yersinia ruckeri. While we were able to demonstrate in vitro that asCATH1 and 2, possessed direct microbicidal activity against the fish pathogen, Vibrio anguillarum, and a common gram negative bacterium, Escherichia coli, little or no bactericidal activity was found against Y. ruckeri. The contribution of either asCATH in the immune response or as a potential virulence factor during yersiniosis is highlighted from the increased expression of asCATH1 and 2 mRNA during an in vivo challenge with Y. ruckeri . We propose that Atlantic salmon cathelicidins participate in the interplay between the innate and adaptive immune systems via the release of cytokines enabling a more effective response to invading pathogens

    The antimicrobial peptide, tilapia hepcidin 2-3, and PMA differentially regulate the protein kinase C isoforms, TNF-alpha and COX-2, in mouse RAW264.7 macrophages

    No full text
    The antimicrobial and immunomodulatory functions of the antimicrobial peptide, tilapia hepcidin (TH)2-3, were previously studied. Herein, we report the differential modulation of protein kinase C (PKC)-associated proteins by TH2-3, and the PKC activator, phorbol 12-myristate 13-acetate (PMA), in RAW264.7 macrophages. Treatment with TH2-3 at 40 or 80 mu g/ml did not affect the cell morphology, but TH2-3 at 120 mu g/ml produced morphological changes similar to those after treatment with PMA in RAW264.7 cells. The coexistence of the PKC inhibitor, Ro-31-8220, prevented morphological changes induced by either PMA or 120 mu g/ml TH2-3 in RAW264.7 cells. Since PMA is known to induce expression of the proinflammatory cytokine, tumor necrosis factor (TNF)-alpha, activation of the TNF-alpha promoter in response to TH2-3 and PMA treatments in lipopolysaccharide (LPS)-stimulated cells was compared. In LPS-stimulated RAW264.7 cells, TNF-alpha promoter activity was significantly suppressed by TH2-3, but not by PMA. In addition, PMA activated prostaglandin synthase-associated cyclooxygenase (COX)-2 proteins on the cell surface, while the presence of TH2-3 inhibited its expression. Western blotting demonstrated that the expressions of PKC-mu, phosphorylated (p)-PKC mu at serine (S)-744, and p-PKC delta were activated by PMA, but were suppressed by TH2-3. In addition, p-PKC at S-916 was activated by TH2-3 and inhibited by PMA. In conclusion, the differential regulation of PKC isoforms by PMA and TH2-3 may influence morphological changes and regulation of TNF-alpha in RAW264.7 cells. (C) 2010 Elsevier Inc. All rights reserved

    Antiviral function of tilapia hepcidin 1-5 and its modulation of immune-related gene expressions against infectious pancreatic necrosis virus (IPNV) in Chinook salmon embryo (CHSE)-214 cells

    No full text
    Antimicrobial peptides, small cysteine-rich molecules, play vital roles in host defense mechanisms against pathogen infection. Recently, tilapia hepcidin (TH)1-5, was characterized, and its antimicrobial functions against several pathogens were reported. Herein, we investigated the antiviral functions of TH1-5 against infectious pancreatic necrosis virus (IPNV) in Chinook salmon embryo (CHSE)-214 cells. The presence of TH1-5 enhanced the survival of CHSE-214 cells infected with IPNV. Additionally, the number of plaques formed by the cytopathic effect of IPNV in CHSE-214 cells decreased when IPNV was preincubated with TH1-5. This observation demonstrates the antiviral function of TH1-5. Real-time PCR studies showed the modulation of interleukin, annexin, and other viral-responsive gene expressions by TH1-5. When TH1-5 and IPNV were used to co-treat CHSE-214 cells, then cells were re-challenged with IPNV at 24 h, the cells did not survive the IPNV infection. This shows that in the absence of TH1-5, viral re-challenge killed CHSE-214 cells. In conclusion TH1-5 protected CHSE-214 cells against IPNV by direct antimicrobial and immunomodulatory functions. (C) 2010 Elsevier Ltd. All rights reserved
    corecore