10,013 research outputs found
Non-equilibrium properties of the S=1/2 Heisenberg model in a time-dependent magnetic field
The time-dependent behavior of the Heisenberg model in contact with a phonon
heat bath and in an external time-dependent magnetic field is studied by means
of a path integral approach. The action of the phonon heat bath is taken into
account up to the second order in the coupling to the heath bath. It is shown
that there is a minimal value of the magnetic field below which the average
magnetization of the system does not relax to equilibrium when the external
magnetic field is flipped. This result is in qualitative agreement with the
mean field results obtained within -theory.Comment: To be published in Physica
Electron Fabry-Perot interferometer with two entangled magnetic impurities
We consider a one-dimensional (1D) wire along which single conduction
electrons can propagate in the presence of two spin-1/2 magnetic impurities.
The electron may be scattered by each impurity via a contact-exchange
interaction and thus a spin-flip generally occurs at each scattering event.
Adopting a quantum waveguide theory approach, we derive the stationary states
of the system at all orders in the electron-impurity exchange coupling
constant. This allows us to investigate electron transmission for arbitrary
initial states of the two impurity spins. We show that for suitable electron
wave vectors, the triplet and singlet maximally entangled spin states of the
impurities can respectively largely inhibit the electron transport or make the
wire completely transparent for any electron spin state. In the latter case, a
resonance condition can always be found, representing an anomalous behaviour
compared to typical decoherence induced by magnetic impurities. We provide an
explanation for these phenomena in terms of the Hamiltonian symmetries.
Finally, a scheme to generate maximally entangled spin states of the two
impurities via electron scattering is proposed.Comment: 19 page
- …