77 research outputs found

    Spectral convexity for attractive SU(2N) fermions

    Get PDF
    We prove a general theorem on spectral convexity with respect to particle number for 2N degenerate components of fermions. The number of spatial dimensions is arbitrary, and the system may be uniform or constrained by an external potential. We assume only that the interactions are governed by an SU(2N)-invariant two-body potential whose Fourier transform is negative definite. The convexity result implies that the ground state is in a 2N-particle clustering phase. We discuss implications for light nuclei as well as asymmetric nuclear matter in neutron stars.Comment: 10 pages, 2 figures; references adde

    Effective Range Corrections to Three-Body Recombination for Atoms with Large Scattering Length

    Full text link
    Few-body systems with large scattering length a have universal properties that do not depend on the details of their interactions at short distances. The rate constant for three-body recombination of bosonic atoms of mass m into a shallow dimer scales as \hbar a^4/m times a log-periodic function of the scattering length. We calculate the leading and subleading corrections to the rate constant which are due to the effective range of the atoms and study the correlation between the rate constant and the atom-dimer scattering length. Our results are applied to 4He atoms as a test case.Comment: 6 pages, 2 figures, improved discussion, final versio

    Three-body Recombination of Lithium-6 Atoms with Large Negative Scattering Lengths

    Full text link
    The 3-body recombination rate at threshold for distinguishable atoms with large negative pair scattering lengths is calculated in the zero-range approximation. The only parameters in this limit are the 3 scattering lengths and the Efimov parameter, which can be complex valued. We provide semi-analytic expressions for the cases of 2 or 3 equal scattering lengths and we obtain numerical results for the general case of 3 different scattering lengths. Our general result is applied to the three lowest hyperfine states of Lithium-6 atoms. Comparisons with recent experiments provide indications of loss features associated with Efimov trimers near the 3-atom threshold.Comment: 4 pages, 4 figures, agrees with published versio

    Efimov Physics in 6Li Atoms

    Full text link
    A new narrow 3-atom loss resonance associated with an Efimov trimer crossing the 3-atom threshold has recently been discovered in a many-body system of ultracold 6Li atoms in the three lowest hyperfine spin states at a magnetic field near 895 G. O'Hara and coworkers have used measurements of the 3-body recombination rate in this region to determine the complex 3-body parameter associated with Efimov physics. Using this parameter as the input, we calculate the universal predictions for the spectrum of Efimov states and for the 3-body recombination rate in the universal region above 600 G where all three scattering lengths are large. We predict an atom-dimer loss resonance at (672 +/- 2) G associated with an Efimov trimer disappearing through an atom-dimer threshold. We also predict an interference minimum in the 3-body recombination rate at (759 +/- 1) G where the 3-spin mixture may be sufficiently stable to allow experimental study of the many-body system.Comment: 27 pages, 9 figures, REVTeX4, published versio

    Range Corrections to Three-Body Observables near a Feshbach Resonance

    Full text link
    A non-relativistic system of three identical particles will display a rich set of universal features known as Efimov physics if the scattering length a is much larger than the range l of the underlying two-body interaction. An appropriate effective theory facilitates the derivation of both results in the |a| goes to infinity limit and finite-l/a corrections to observables of interest. Here we use such an effective-theory treatment to consider the impact of corrections linear in the two-body effective range, r_s on the three-boson bound-state spectrum and recombination rate for |a| much greater than |r_s|. We do this by first deriving results appropriate to the strict limit |a| goes to infinity in coordinate space. We then extend these results to finite a using once-subtracted momentum-space integral equations. We also discuss the implications of our results for experiments that probe three-body recombination in Bose-Einstein condensates near a Feshbach resonance.Comment: 28 pages, 3 figure

    Few-body physics in effective field theory

    Full text link
    Effective Field Theory (EFT) provides a powerful framework that exploits a separation of scales in physical systems to perform systematically improvable, model-independent calculations. Particularly interesting are few-body systems with short-range interactions and large two-body scattering length. Such systems display remarkable universal features. In systems with more than two particles, a three-body force with limit cycle behavior is required for consistent renormalization already at leading order. We will review this EFT and some of its applications in the physics of cold atoms and nuclear physics. In particular, we will discuss the possibility of an infrared limit cycle in QCD. Recent extensions of the EFT approach to the four-body system and N-boson droplets in two spatial dimensions will also be addressed.Comment: 10 pages, 5 figures, Proceedings of the INT Workshop on "Nuclear Forces and the Quantum Many-Body Problem", Oct. 200

    Physicochemical and Functional Properties of Extruded Sorghum‐Based Bean Analog

    Get PDF
    The objective of this study was to develop and evaluate the physicochemical and functional properties of a bean like product made from cold extrusion of sorghum, soy and wheat flours. Formulated samples comprised of sorghum (25–70%), wheat (0–35%) and soy (30–50%) flours. The degree of gelatinization ranged from 54.1 to 93.6%. Pasting curves showed minimal starch damage with peak and final viscosities in the range of 456.0–1138.5 and 297–584 cP, respectively. Textural properties of the extrudates were significantly impacted by starch content and cooking time. There was significant cooking loss due to poor binding properties of the extrudates. Cooking the product for 30 min after 2 h soaking gave comparable hardness to cooked navy bean. Texture profile analysis showed that mostly starch-based ingredients contributed to hardness and cohesiveness, while formulations high in protein showed increased adhesiveness and gumminess

    Four-boson scale near a Feshbach resonance

    Full text link
    We show that an independent four-body momentum scale μ(4)\mu_{(4)} drives the tetramer binding energy for fixed trimer energy (or three-body scale μ(3)\mu_{(3)}) and large scattering length (aa). The three- and four-body forces from the one-channel reduction of the atomic interaction near a Feshbach resonance disentangle μ(4)\mu_{(4)} and μ(3)\mu_{(3)}. The four-body independent scale is also manifested through a family of Tjon-lines, with slope given by μ(4)/μ(3)\mu_{(4)}/\mu_{(3)} for a1=0a^{-1}=0. There is the possibility of a new renormalization group limit cycle due to the new scale

    Universality in Few-Body Systems

    Full text link
    Low-energy universality in atomic few-body systems as a result of a large two-body scattering length has gained a lot of attention recently. Here, I discuss recent progress in describing the three-body recombination of cold atoms in terms of a finite set of universal scaling functions and review results for the recombination length of cesium-133 atoms obtained with these functions. Furthermore, I will consider the inclusion of effective range corrections and the relevance for further calculations in atomic and nuclear physics.Comment: Plenary talk at 20th European Conference on Few-Body Problems in Physics (EFB 20), Pisa, Italy, 10-14 Sep 2007, FBS style, 2 figue

    Universal low-energy properties of three two-dimensional particles

    Get PDF
    Universal low-energy properties are studied for three identical bosons confined in two dimensions. The short-range pair-wise interaction in the low-energy limit is described by means of the boundary condition model. The wave function is expanded in a set of eigenfunctions on the hypersphere and the system of hyper-radial equations is used to obtain analytical and numerical results. Within the framework of this method, exact analytical expressions are derived for the eigenpotentials and the coupling terms of hyper-radial equations. The derivation of the coupling terms is generally applicable to a variety of three-body problems provided the interaction is described by the boundary condition model. The asymptotic form of the total wave function at a small and a large hyper-radius ρ\rho is studied and the universal logarithmic dependence ln3ρ\sim \ln^3 \rho in the vicinity of the triple-collision point is derived. Precise three-body binding energies and the 2+12 + 1 scattering length are calculated.Comment: 30 pages with 13 figure
    corecore